Lecture 2 Multiple Regression and Tests

Dr.ssa Rossella Iraci Capuccinello

2017-18

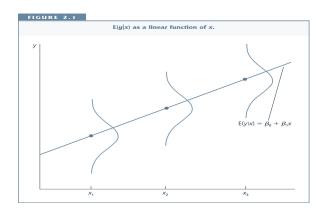
Simple Regression Model

- The random variable of interest, y, depends on a single factor, x_{1i} , and this is an exogenous variable.
- The true but unknown relationship is defined as being

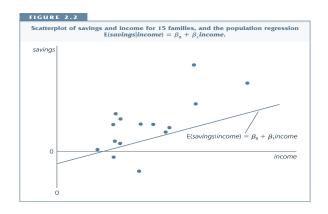
$$y_i = \beta_0 + \beta_1 x_{1i} + u_i$$

- The values of y are expected to lie on a straight line, depending on the corresponding values of x
- Their values will differ from those predicted by that line by the amount of the error term u_i

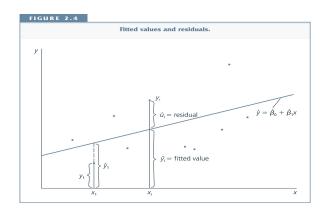
Simple Regression Model Fig1



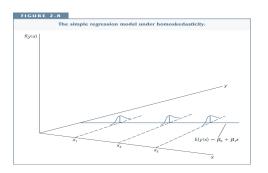
Simple Regression Model Fig2



Simple Regression Model Fig3



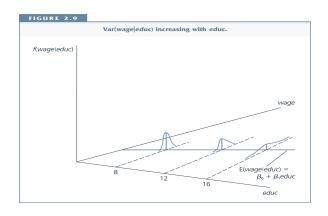
Simple Regression Model Fig4 - Homoskedasticity



Source: Chap. 2 Woolwridge

The errors are considered drawn from a fixed distribution, with a mean of zero and a constant variance of σ^2

Simple Regression Model Fig5 - Heteroskedasticity



Multiple Regression

- The random variable of interest, y, depends upon a number of different factors, $x_{1i}, x_{2i}, \ldots, x_{ki}$, and these are exogenous variables.
- The true but unknown relationship is defined as being

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} \dots x_{ki} + u_i$$
 $i = 1, \dots, n$

CLRM assumptions

- the Classical Linear Regression Model (CLRM) assumptions are:
 - x_{ii} j = 1, ... k are non-stochastic
 - ② $E(u_i|x_1,x_2,\ldots,x_k)=0$ (Exogeneity \rightarrow regressors are uncorrelated with the errors)
 - **3** $Var(u_i|x_1,x_2,...,x_k) = \sigma^2$ (error variance constant (**homoscedasticity**), points distributed around true regression line with a constant spread)
 - $cov(u_i, u_j | x_1, x_2, ..., x_k) = 0$ (errors serially uncorrelated over observations)
 - $(u_i|x_1,x_2,\ldots,x_k) \sim N(0,\sigma^2) \rightarrow \text{Normality}$

Running Multiple Regression

Simple regressions are easy:

- Type reg followed by
 - Dependent variable : y
 - ② Independent variables : x_1, x_2, \ldots, x_k

Simplest specification

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
$$\frac{\partial y}{\partial x_1} = \beta_1$$

ullet change in y for a unit increase in x_1

Scaled dependent variable

$$y/\alpha = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
$$\frac{\partial y}{\partial x_1} = \frac{\beta_1}{\alpha}$$
$$\frac{\partial y}{\partial x_2} = \frac{\beta_2}{\alpha}$$

- Interpretation coefficient:
 - each new coefficient and s.e. will be the corresponding old coefficient and s.e. multiplied by the scalar α
 - t statistics are identical.

Standardized regressors

$$\begin{aligned} zy = & \delta_0 + \delta_1 z x_1 + \delta_2 z x_2 + \epsilon \\ & \frac{\partial zy}{\partial z x_1} = \delta_1 = \frac{\sigma_1}{\sigma_y} \beta_1 \\ where \quad zy = \frac{y - \overline{y}}{\sigma_y} \quad zx = \frac{x - \overline{x_j}}{\sigma_j} \end{aligned}$$

- if x_1 increases by 1 s.d. then y changes by δ_1 standard deviations.
- to generate a sdtzed variable: egen zvarname=std(varname)
- Interpretation: 1 s.d. increase in x_1 decreases y by $\delta_1 s.d$.

Log forms

0

$$\ln(y) = \alpha + \beta_1 \ln(x_1) + \beta_2 x_2 + \beta_3 (1/x_3) + \beta_4 x_3 + \beta_5 x_4 + \beta_6 x_4^2 + u$$

 $\frac{\partial \ln(y)}{\partial \ln(x_1)} = \beta_1$

% change in y for a 1% increase in x_1 , elasticity of y w.r.t. x_1

$$\frac{\partial \ln(y)}{\partial x_2} = \beta_2$$

change in ln(y) for a unit increase in x_2 ; when β_2 multiplied by 100, this is the percentage change in y (also called semi-elasticity of y w.r.t. x_2)

Examples

reg logearn age ages yearsed deg_all

• $\ln(y) = logearn$ and $x_2 = s$ years of education. Suppose $\beta_2 = 0.054$ says that each year of education increases wages by a constant percentage, 5.4%.

$$\%\Delta$$
 wage $pprox (100 \cdot eta_2)\Delta x_2$

The coefficient of deg_all (0.5613) says that having a degree or a higher qualification increases wages by 56.13% relative to those individuals with lower or no qualifications, holding other factors fixed.

Simplest specification Scaled dependent variable Standardized regressors Log forms

Log and quadratics forms

$$\ln(y) = \alpha + \beta_1 \ln(x_1) + \beta_2 x_2 + \beta_3 x_3 + \beta_4 (1/x_3) + \beta_5 x_4 + \beta_6 x_4^2 + u$$
$$\frac{\partial \ln(y)}{\partial x_3} = \beta_3 - \frac{\beta_4}{x_3^2}$$

proportionate change in y for a unit increase in x_3

$$\frac{\partial \ln(y)}{\partial x_4} = \beta_5 + 2\beta_6 x_4$$

proportionate change in y for a unit increase in x_4

- if $\widehat{\beta}_5 > 0$ and $\widehat{\beta}_6 < 0 \Longrightarrow$ quadratic relationship between x and y, diminishing effects of x on y.
- e.g. tot effect at age $35 \Longrightarrow 0.1239 2 * 0.00140 * 35 = 0.0255$
- tot effect at age $60 \implies 0.1239 2 * 0.00140 * 60 = -0.04470$

t-test

$$H_o: \beta_1 = a_1 \iff \beta_{age} = 0$$

 $H_1: \beta_1 \neq a_1 \iff \beta_{age} \neq 0$

$$t = \frac{\widehat{\beta}_1 - a_1}{s.e.(\widehat{\beta}_1)} \sim t_{\alpha/2,dof=n-k-1} = \frac{0.1239212 - 0}{0.0029524} \sim t_{0.025,13724-22-1}$$

- Recalling that the degrees of freedom (dof) are the difference: number of observations minus number of estimated parameters
- Rejection rule: if $|t| > t^c \Longrightarrow 41.97 > 1.96 \Longrightarrow reject H_o$

t-test in Stata

- The t-stat appears in the regression output.
- You can perform the test manually test age=0
- but it shows an F-test
- knowing that $t_{n-k-1}^2 = F_{1,n-k-1}$ the results are identical

$$F(1,13701) = 1761.69$$

 $di \ sqrt(1761.69) \Longrightarrow 41.97$
 $di \ invttail(13702, 0.025) \Longrightarrow 1.96$

p-value

Stata shows also the p-value: the largest significance level at which the null hypothesis would not be rejected, given the observed t. Generally, one **rejects** the null hypothesis if the **p-value is smaller** than or equal to the **significance** level.

$$P(T > t_{observed}|H_o) = p$$
 $P(|T| > |t||H_o) = 2 * P(T > |t|) = p$
 $in Stata \ ttail(n, t)$
 $di \ 2 * ttail(13724, 41.97) \Longrightarrow 0.000$

t-test - other commands

- testparm dresid2 dresid3, equal test whether the coeff are equal
- test age=5
- testnl To test non-linear constraints

Confidence Interval

From

$$\frac{\widehat{\beta}_i - \beta_i}{se(\widehat{\beta}_i)} \sim t_{\alpha/2, n-k-1}$$

simple manipulations leads to $(1 - \alpha)\%$ CI for unknown β_i :

$$\widehat{\beta}_i \pm t_{\alpha/2,n-k-1}^c \cdot se(\widehat{\beta}_i)$$

where $t_{\alpha/2,n-k-1}^c$ is $(1-\alpha/2)^{th}$ percentile in $t_{\alpha/2,n-k-1}$ distribution. In our example, 95% CI for deg_all :

$$\beta_{-i} = 0.5612611 - 1.96 * 0.0152126 = 0.53144$$

 $\beta_{i} = 0.5612611 + 1.96 * 0.0152126 = 0.59107.$

It is a good practice, when running models to check the CI for the same parameter estimated.

Defining

- $SST = \sum_{i=1}^{n} (y_i \overline{y})^2$ total sum of squares
- $SSE = \sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$ explained sum of squares
- $RSS = \sum_{i=1}^{n} \widehat{u_i}^2$ residual sum of squares

Knowing that

$$SST = SSE + RSS$$

The R^2 is defined to be

$$R^2 = \frac{SSE}{SST} = 1 - \frac{RSS}{SST}$$

R^2 interpretation

- It is the proportion of the sample variation in y_i explained by the OLS line.
- It never decreases and increases when an additional regressor is added to a regression.
- In our example, $R^2 = 0.2171$ means that all the independent variables together explain about 21.71% of the variation of log wages for our sample of workers.

F-test of multiple restrictions Unrestricted and Restricted models Perform the F-test Rejection Rule Example in Stata

F-test of multiple restrictions

$$H_o: \beta_1 = \beta_1^0, \beta_2 = \beta_2^0 \dots \beta_q = \beta_q^0$$

 $H_1: \beta_j \neq \beta_j^0, \ j = 1, \dots, q$

The null constitutes **q restrictions** \Longrightarrow **multiple (or joint) hypothesis test**.

Unrestricted and Restricted models

The **unrestricted model** has k independent variables + the intercept

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u \tag{1}$$

Suppose that the restriction is that q of the k variables (for simplicity the last q) have zero coefficients, then

$$H_o: \beta_{k-q+1} = 0, \dots, \beta_k = 0$$

and imposing these restriction in (1) we obtain the **restricted model**

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{k-q} x_{k-q} + u$$
 (2)

Perform the F-test

- Run regression 1 and get RSS_{ur}
- ② Run regression 2 and get RSS_r
- Compute the F statistic

$$F = \frac{(RSS_r - RSS_{ur})/q}{RSS_{ur}/dof} \sim F_{q,dof}^{\alpha}$$

- \mathbf{q} = numerator degrees of freedom = $dof_r dof_{ur} = (n (k q + 1)) (n (k + 1))$ = number of restrictions under H_o , i.e. the number of equality signs in H_o
- **dof**= denominator degrees of freedom = $dof_{ur} = n k 1$

Rejection Rule

- If $F > F^c \implies reject H_0$ then x_{k-q+1}, \dots, x_k are jointly statistical significant.
- If H_o is not rejected, then the variables are jointly insignificant.

In this context the p-value is defined as

$$p = P(\mathcal{F} > F)$$

where \mathcal{F} is an F random variable with (q, n-k-1) degrees of freedom, and F is the actual value of the test statistic. A small p-value is evidence against H_o .

F-test in Stata

 H_o : nonwhite = female = married = numdep = $0 \Longrightarrow q = 4$

- use wage1.dta
- Unrestricted model
 reg lwage educ exper tenure nonwhite female married numdep
 ⇒ k = 7
- test nonwhite female married numdep

$$H_o$$
: female =-0.3, married =0.15, numdep = 0 $\Longrightarrow q = 3$

• testnl (
$$_b[female] = -0.3$$
) ($_b[married] = 0.15$) ($_b[numdep] = 0$)

Example - manually

 H_o : nonwhite = female = married = numdep = $0 \Longrightarrow q = 4$

- Unrestricted model
 - reg lwage educ exper tenure nonwhite female married numdep $\implies k = 7$
- take note of RSS_{UR}
- Restricted model reg lwage educ exper tenure $\implies k q = 3$
- take note of RSS_R
- compute $F = \frac{(RSS_r RSS_{ur})/q}{RSS_{ur}/(n-k-1)} \sim F_{q,(n-k-1)}^{\alpha}$
- find in the Tables F critical value or use Stata command di $invF(q, n-k-1, \alpha)$

F-test of overall significance

$$\begin{split} & H_o: \beta_1 = \beta_2 = \ldots = \beta_q = 0 \quad H_1: \text{Any } \beta_j \neq 0 \ j = 1, \ldots, q \\ & \textbf{UR}: y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + u \\ & \textbf{R}: y = \beta_0 + u \\ & F = & \frac{(RSS_r - RSS_{ur})/k}{RSS_{ur}/(n-k-1)} \sim F_{k,(n-k-1)}^{\alpha} \quad \text{or} \\ & F = & \frac{R_{ur}^2/k}{(1-R_{ur}^2)/(n-k-1)} \end{split}$$

The F statistic with the R^2 is valid only for testing joint exclusion of **all** regressors.

Saving typing - macro

For defining lists of vars (globally).

- global
 - type **global** followed by the groupname followed by the vars that you want to group together
 - 2 in a regression type reg depvar followed by \$groupname
- Pay careful attention to the sign \$ in the global.

Example - overall significance

The F test of overall significance is reported automatically in Stata output.

You can also perform it either computing the F statistic or by using that Stata command test. For example, using a macro

- global indvars educ exper tenure nonwhite female married numdep
- reg lwage \$indvars
- test \$indvars