Innovation, environmental policy and lock-in effects

Perspectives on the transition towards a greener economy

Presentation at conference "Environmental and Energy Innovations in Economic Dynamics", Rome, 21-22 May 2009

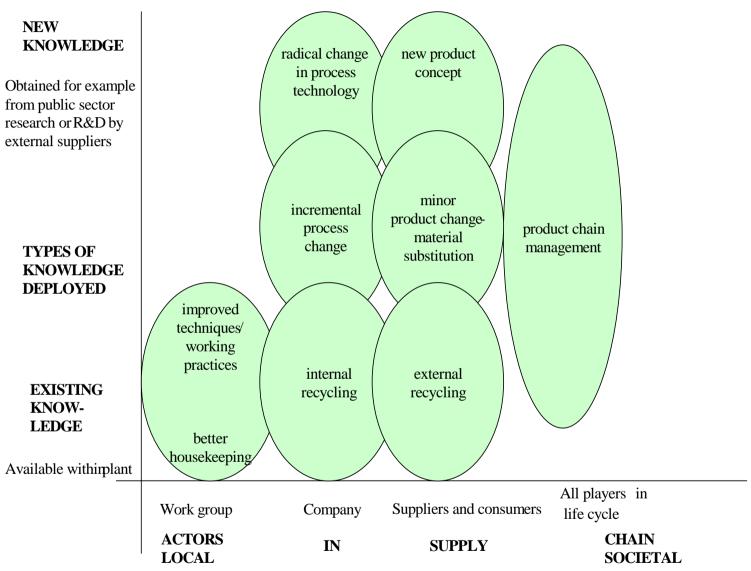
René Kemp

Eco-innovation

- In Europe the term environmental technology is superseded by the broader concept of eco-innovation in recognition of the shifting attention to product change and changes in product chains.
- Eco-innovation is also the **stated aim of government**. It is part of the Sustainable development strategy and the economic growth strategy of the European Commission because of the assumption of offering a 'double win'.

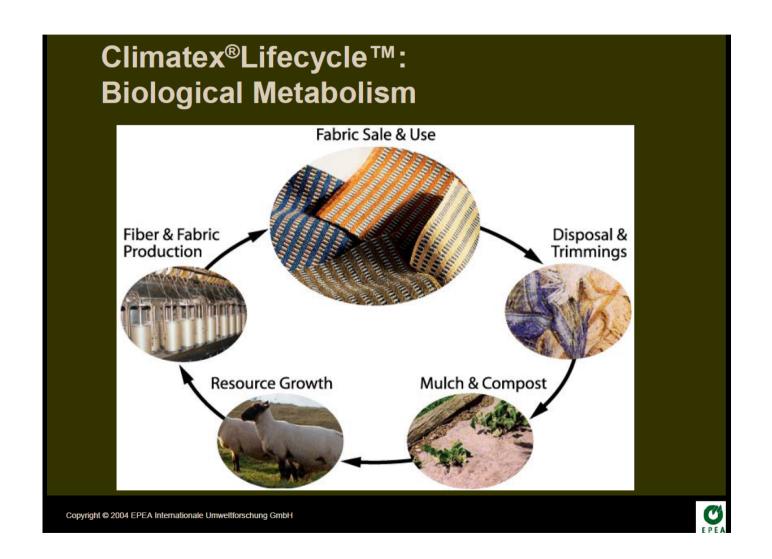
What is eco-innovation?

- Eco-innovation is a relative concept:
 - More environmentally benign than relevant alternatives
 - User perspective versus developer perspective
 - Innovative goods, services and systems are evolving
- It does not have to be environmentally motivated


3 definitions of eco-innovation

- "the production, application or exploitation of a good, service, production process, organisational structure, or management or business method that is novel to the firm or user and which results, throughout its life cycle, in a reduction of environmental risk, pollution and the negative impacts of resources use (including energy use) compared to relevant alternatives" (MEI project)
- "the creation of novel and competitively priced goods, processes, systems, services, and procedures that can satisfy human needs and bring quality of life to all people with a life-cycle-wide minimal use of natural **resources** (materials including energy and surface area) per unit of output, and a minimal release of toxic resources" (Technopolis)
- "a change in economic activities that improves **both** the economic performance and the environmental performance" (ECO-DRIVE project).

- The concept of eco-innovation has been wrongly restricted in policy debates to (technological) innovation in the environmental goods and services sector;
- Eco-innovation can and does occur in all economic sectors but the current set of indicators and data prevents a full and proper analysis of the phenomenon;

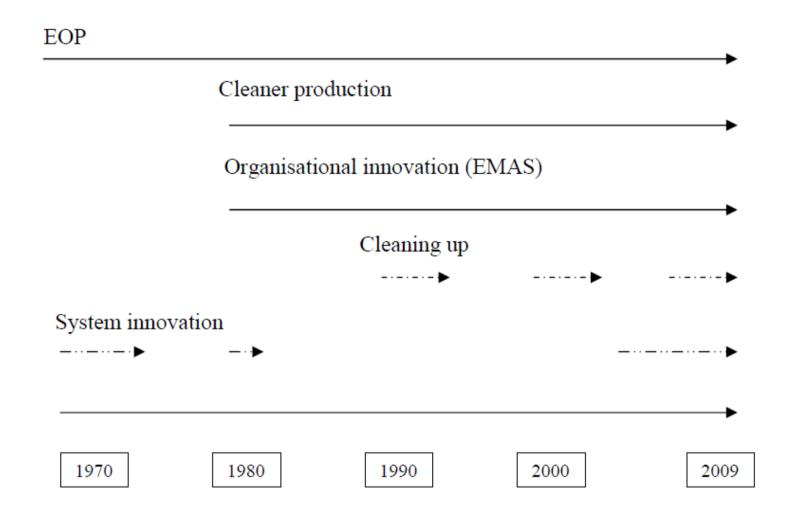

(Reid and Miedzinski, 2008)

Type of eco-innovation	Pulled/pushed by
A. Environmental technologies	
Pollution control technologies	Environmental regulation
Cleaning-up technologies	Soil remediation programmes
Waste management systems	Resource prices, waste management requirements, EPR
Cleaner process technologies	Cost minimisation
Environmental monitoring and instrumentation	Environmental regulations and EMAS
Noise and vibration control	Noise regulations
Water supply	Water supply programmes of water boards
Green energy technologies	Environmental regulations, subsidies, taxes, ETS
B. Organisational innovations for the	Regulations (directly or indirectly),
environment	management demand
C. Product changes	Regulations, green demand, competition
D. Green system innovations (industrial	GPT pushed by science, niche
ecology, smart grids, V2G)	applications, visions,

Source: Clayton, Anthony, Graham Spinardi and Robin Williams (1999), Policies for Cleaner Technology . A New Agenda for Government and Industry. Earthscan Publications Ltd., London, p.273

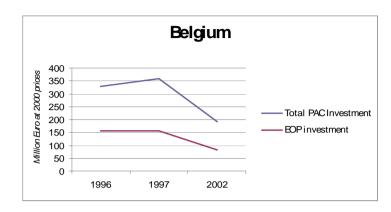
Cradle to cradle (C2C)

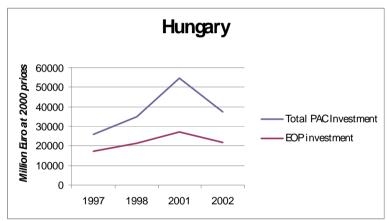
Vehicle to Grid (V2G)

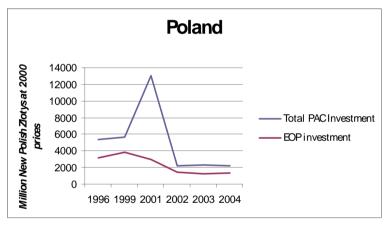


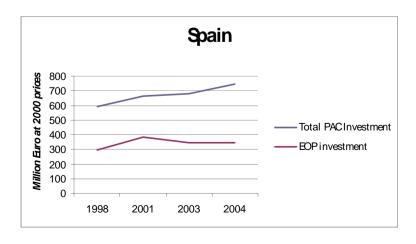
A market estimate

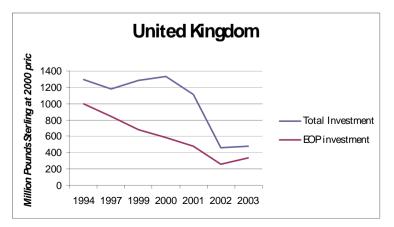

Source: Market studies, expert interviews, Roland Berger Strategy Consultants, 2006

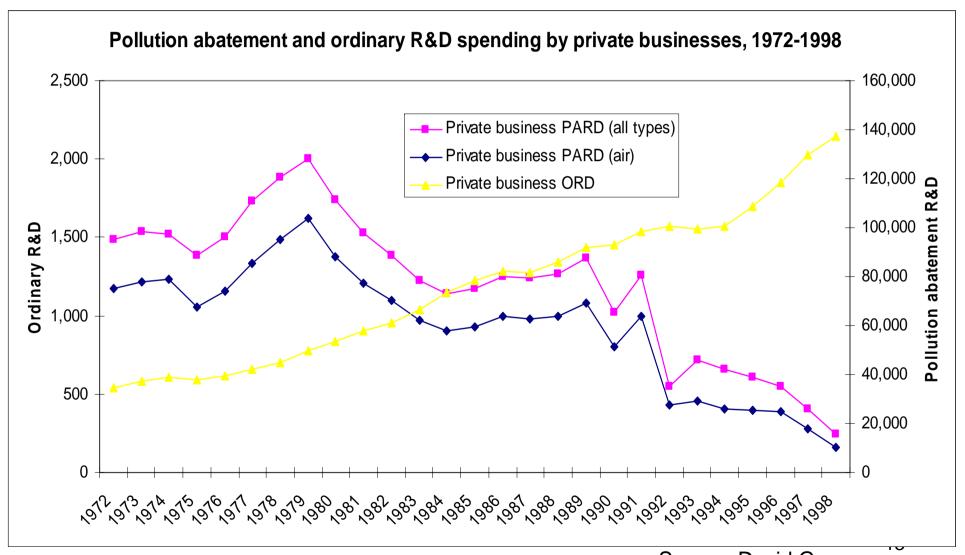

The eco-innovation time line




Investments in pollution abatement expenditure (Total vs. EOP)


Source: OECD

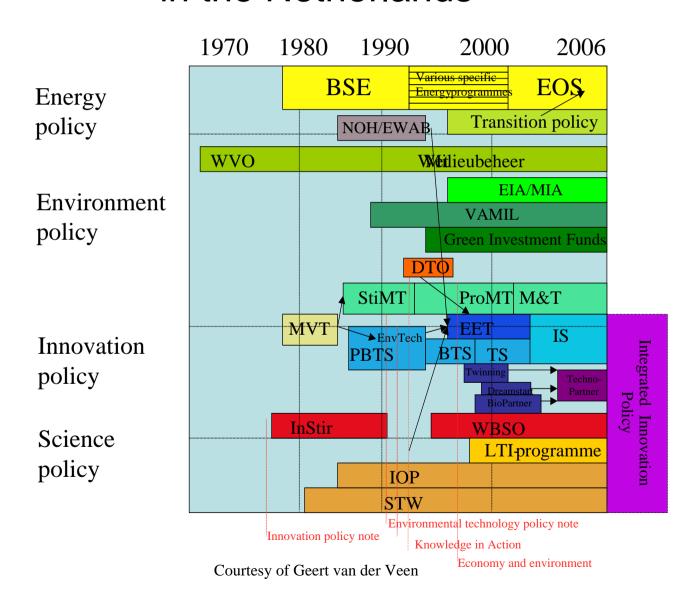




Pollution abatement R&D shows a countervailing trend in the US

Source: David Grover

Countries have multiple policies for innovation:


- Support of R&D
- Knowledge transfer
- Investment support
- Green taxes
- Science and technology programmes
- Skills and educational policies
- Competition policy
- Regulations to diffuse environmental technologies

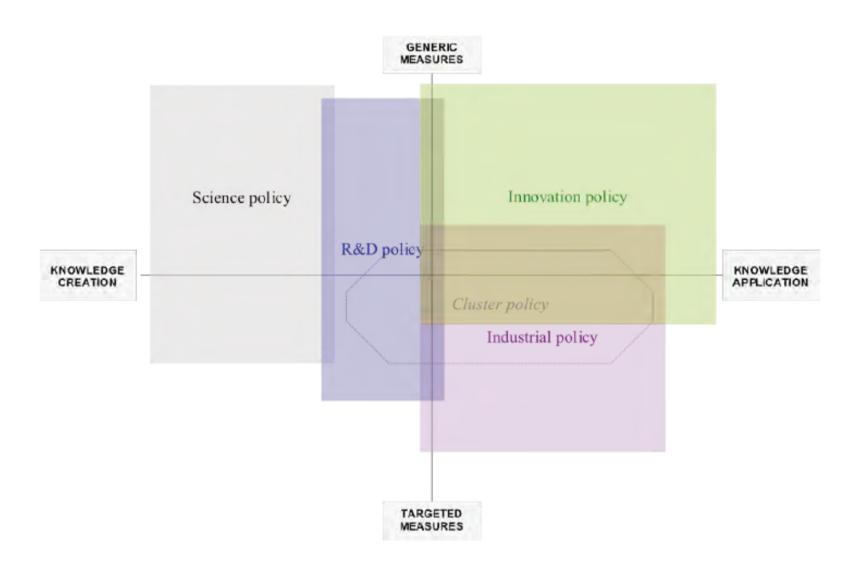
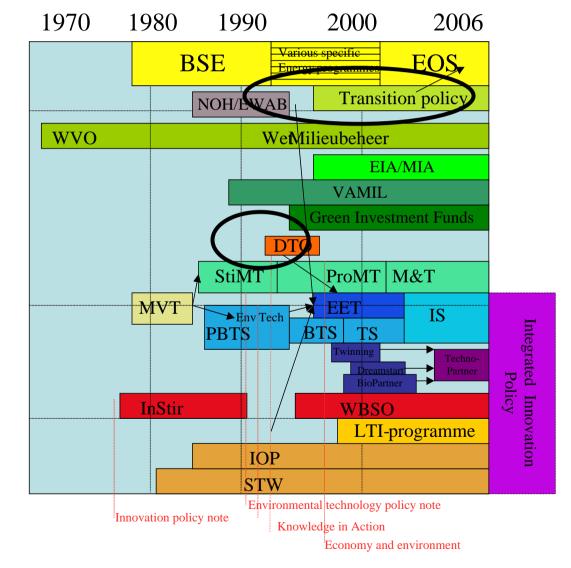

- ..

Exhibit 30. Examples of typical eco-innovation measures

Туре	Examples of measures	Policy fields
Market-oriented instruments	fiscal measures (e.g. energy tax, emissions tax, tax reductions, investment tax credits, VAT) emissions trading schemes	fiscal policy trade policy
Public procurement	green public procurement	 relevant for all policy fields with the public procurement capacity (notably transport policy, construction and housing policy, defence policy)
Regulatory and normative frameworks	 energy (de)regulation standards and norms (including technology regulations, quota-based schemes, energy saving requirements) permits and bans land use regulations environmental management systems eco-labels and other soft standardisation instruments (including voluntary agreements) 	environmental policy industrial policy energy policy trade policy local development policy
Support for innovation activity	 financial schemes (loans and credits) subsidies (e.g. renewable energy infrastructure subsisdies) venture capital funds business incubation programmes targeted R&D and technology programmes targeted business advisory services eco-cluster policies (cluster involved in eco-innovation development and support for eco-innovative solutions in existing clusters e.g. advanced on-site industrial ecology solutions) 	economic policy energy policy innovation policy entrepreneurship policy research policy regional policy
Capacity building and demonstration measures	 professional training (eco-efficiency capacity building for enterprises) changes in educational programmes 	education and training policy
Strategic planning and foresight	green foresight strategic spatial planning	foresight is relevant for all policy fields

Government policy and sustainable innovation in the Netherlands

Source: Reid and Miedzinski (2008)


Long term programming

Energy policy

Environment policy

Innovation policy

Science policy

Courtesy of Geert van der Veen

The Dutch transition approach for energy

Goals

- -50% CO2 in 2050 in a growing economy
- An increase in the rate of energy saving to 1.5- 2% a year
- The energy system getting progressively more sustainable
- The creation of new business

Means

- Government process manager; interdepartmental directorate
- 7 transition platforms
- 35 transition paths
- (Specific subsidy scheme to support) Experiments
- Challengers helpdesk

Official transition platforms

Green resources

Energy producing greenhouse

Sustainable mobility

Chain efficiency

Sustainable electricity supply

New gas

Built environment

Selected transition paths

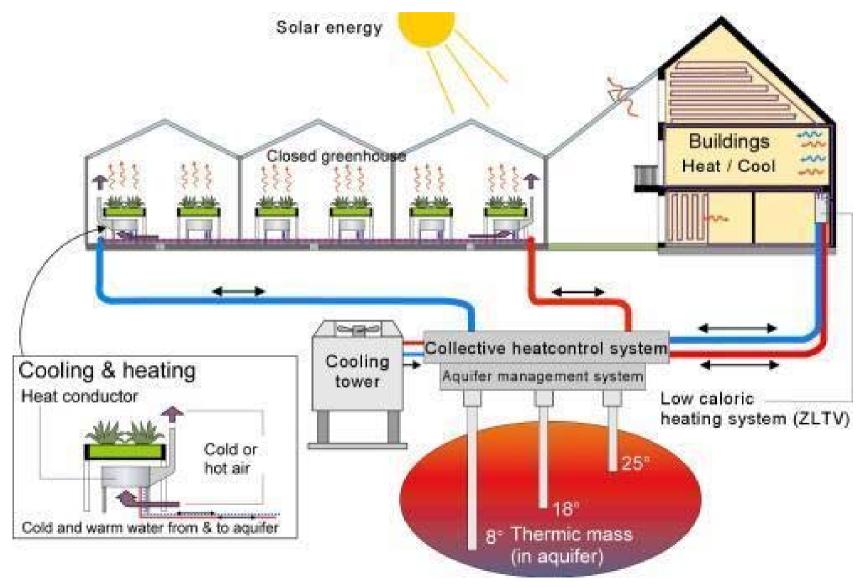
Theme	Goal	Transition path
New gas	To become the most sustainable gas country in Europe	Decentralized electricity generation
		Energy efficient greenhouses
		Green gas hydrogen
		Clean fossil fuels
		Built environment
Sustainable em mobility in a	Factor 2 reduction of GHG emissions for new vehicles in 2015 and factor 3 reduction for all vehicles in 2030	Hybrid propulsion
		Biofuels
		Hydrogen vehicles
		Intelligent transport systems
_		Biomass production in NL
	Substitution of 30% of resources for energy by green resources	Chains for biomass import
Green resources		WISE Biomass co-production
		Synthetic Natural Gas
		Sustainable chemistry
Chain efficiency	20-30% extra improvement of product chains by 2030	Optimising the waste chain
		Precision farming
		Process intensification
		Multimodal transport
		Clearing house for bulk products
		Symbiosis (closing material loops)
		Micro cogeneration
		Energy efficient paper production
	Ta analys alaphicitis assessed	Renewable energy sources
Sustainable	To make electricity supply	Decarbonisation and cogeneration
electricity	more sustainable	Electric infrastructure
supply		Electricity use

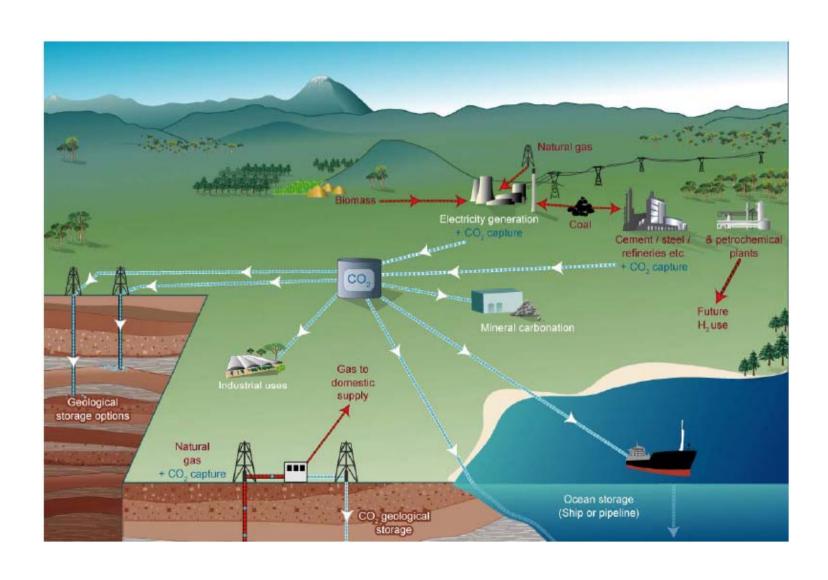
Platform new gas

One of 7 platforms

Goal: to become the most sustainable gas country in the

world


- 4 transition paths:
 - Decentralized electricity production (micro cogeneration)
 - Energy efficient greenhouse
 - Green gas hydrogen
 - Clean fossil fuels


Bottom-up elements

- Business alliances (sometimes with NGO's)
- Transition-experiments
- Identification of barriers / opportunities informing private action and policy

Energy producing greenhouse

Carbon capture and storage

The philosophy behind TM:

Perspektivischer Inkrementalismus

(a guided form of evolutionary change)

- The use of **multiple visions** (because visions create better world together rather than apart)
- The use of experimental learning
- Adaptive portfolios
- Policy oriented towards transitions
- Government as a facilitator of change and partner of business

The role for science and research

- Creating technological innovations
- Sustainability assessment of innovations and alternative systems
- Foresight analysis
- Evaluating the science and research system: is it contributing to system improvement or system innovation?
- Study the **politics** of sustainable innovation

Evaluating the science and research system (suggestion of Andy Stirling)

How much money is spend is for technical research of which the sustainability is

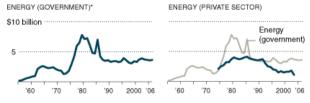
- Highly contested (biofuels, nuclear, CCS, pesticides, etc.)
- Weakly contested (automotive batteries, fuel cells, ..)
- Not contested (solar PV, CSP, ..)

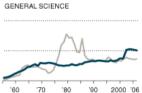
3 types of lock-in

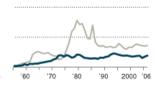
- Sectors are locked into particular technologies, which lead companies to focus their attention to (non-disruptive) incremental innovation
- Policy is locked into fragmented approaches which somehow have to be aligned to SD goals
- Societies are locked into energy sources and combustion technologies, patterns of consumption that are material intensive and produce large amounts greenhouse gasses (Carbon lock-in)

A re-evaluation of picking winners policies

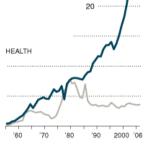
- Picking winners processes are useful for discussing pros and cons of technology options
- ❖ Which should not be used to make technology choices in a centralised manner but should help to guide research into directions where improvement is needed for reasons of sustainability (→ like safer forms of nuclear energy)
- With clear rules for deciding on portfolios and support which is provisional and adaptive

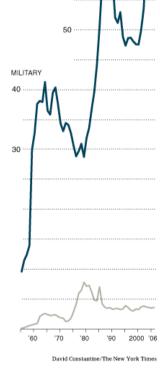

- System innovation presents a difficult issue for policy as it involves substantive risky investments, conflicts between emergent and incumbent actors and reconfiguring the traditional sectoral and policy boundaries (Steward, 2008)
- At present neither innovation policy nor sustainability policy are configured to allow a serious pursuit of transformative innovation


 President Obama has called for support for transformation technologies


Declining Investment in Energy R.& D.

Spending for energy research and development peaked during the oil crisis and has since fallen while spending in most other sectors continues to grow.


Research and development spending by function, in 2006 dollars



NATURAL RESOURCES, ENVIRONMENT

60 -

\$70 billion

Sources: American Association for the Advancement of Science; Dan Kammen, University of California at Berkeley

*Data after 1998 adjusts for U.S. accounting changes.

