Environmental Policy and Environmental Innovation: Recent Evidence on Climate Change Mitigation Technologies based on Patent Data

Nick Johnstone and Ivan Hascic

Empirical Policy Analysis Unit National Policies Division OECD Environment Directorate (www.oecd.org/env/cpe/firms/innovation)

at

Fondazione Edison Conference on "Environment and Energy Innovations in Economics Dynamics" Rome, May 21st, 2009

Structure of Presentation

- Patents as a measure of technological innovation and transfer of climate change mitigation technologies
- Determinants and of innovation of climate change mitigation technologies
- Impacts of innovation of climate change mitigation technologies
- Empirical analysis of the extent and determinants of transfer of climate change mitigation technologies

Acknowledgements

- Joint work with:
 - David Popp (Syracuse Univ., USA)
 - Sebastian Voigt (ZEW, Germany)
 - Elisa Lanzi (FEEM, Italy)
 - Neelakshi Medhi (Syracuse Univ., USA)
 - Neil Odam (Stirling Univ., UK)
 - Frans de Vries (Stirling Univ., UK)
 - Elena Verdolini (FEEM, Italy)
- Results of numerous models summarised in ENV/EPOC/WPNEP(2009)3 (restricted access) & <u>http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_i</u> <u>d=88415</u>

On-Going Research on Environmental Patents

- Development of a methodology for the identification of environmentally-sound technologies (EST) and innovation
- Empirical assessment of the relationship between environmental policy and technological innovation, drawing upon patent data
- Empirical analysis of the extent and determinants of transfer of EST (particularly climate change mitigation technologies)

Patents as a Measure of Innovation

- Pros
 - output measure
 - quantitative/commensurable
 - widely available
- Cons
 - variable quality
 - one of many 'protection' strategies
 - dependent upon local conditions

Patents as a Measure of Environmental Innovation

- Possible to identify distinct 'environmental' innovation i.e. under WIPO IPC scheme over 70,000 technology classifications (<u>http://www.wipo.int/classifications/ipc/en/</u>)
- Application-based and thus broad population of potentially relevant classes (preferable to commodity or sectoral classifications)
- Two possible types of error inclusion of irrelevant patents and exclusion of relevant patents from classifications selected
- Distinction between changes-production-processes and endof-pipe investments: latter more readily identifiable but perhaps less 'innovative'

Use of PATSTAT Database

• Allows for richer 'search strategies' in all environmental spheres with inclusion of abstracts

• Possible to develop more accurate indicators of EST innovation using keyword searches

• Worldwide coverage (data from 80 national and regional patent offices – i.e. all OECD countries, BRICs, etc.)

• Time series for over 30 years, that can be revised and updated at very low cost

•Also - possibility to develop indicators of technology transfer (international patent families)

IPC Hierarchy – An Example

Cub division	Number of	Example of an IPC code			
Subdivision	subdivisions	Symbol	Title		
Section	8	F	Mechanical Engineering; Lighting; Heating; Weapons; Blasting		
Subsection	21	F0	Engines or Pumps		
Class	120	F03	Machines or Engines for Liquids; Wind, Spring, or Weight Motors; Producing Mechanical Power or a Reactive Propulsive Thrust, Not Otherwise Provided For		
Subclass	628	F03G	Spring, Weight, Inertia, or Like Motors; Mechanical-Power-Producing Devices or Mechanisms, Not Otherwise Provided For; or Using Energy Sources Not Otherwise Provided For		
Main group	ca. 6,900	F03G 6	Devices For Producing Mechanical Power From Solar Energy		
Subgroup	ca. 62,100	F03G 6/08	With Solar Energy Concentrating Means		

Sample 'Environmental' Patent Application

Areas of Application for Climate Change

- Renewable energy
- Vehicle fuel efficiency
- Vehicle fuel choice (e.g. hybrid vehicles)
- Fuel cells
- Building energy efficiency (e.g. insulation, heating)
- Lighting technologies
- Clean coal technologies (e.g. IGCC, FBC, PCC)
- Carbon capture and storage
- Methane capture
- Energy efficiency in manufacturing (e.g. cement)

Inventive Activity in Renewable Energy Technologies (EPO patent applications, 3-year moving average, indexed on 1978=1.0)

Technological 'Generations': The Case of Solar Power

Electricity Generation Innovations (claimed priorities worldwide)

Inventive Activity in 'Clean Coal' Technologies (Number of claimed priorities worldwide, 3-year moving average)

What Encourages Innovation in CC Technologies? Evidence from Renewable Energy

	Wind	Solar	Geothemal	Ocean	Biomass	All Renewables	
					& Waste		
Electricity Price	1.465	14.140***	-7.405	-4.015	-7.097	2.861	
Growth of Electricity Cons.	-0.012	0.012	0.036	-0.035	0.015	-0.004	
Total EPO Filings	0.063**	0.062***	-0.036	-0.011	-0.022	0.014	
Specific R&D Expenditures	14.858**	3.224***	4.084*	12.355	-0.387	0.830***	
Feed-in Tariff levels	-0.046**	0.042***	0.023	-0.041	-0.071	0.005	
REC targets	0.205**	-0.028	28.630**	0.023	0.019	0.102*	
Kyoto Protocol	0.605***	0.381***	-0.461	0.061	-0.045	0.585***	
Investment Incentives	-0.249	0.228	0.925*	0.086	0.765***	0.201*	
Tax Measures	0.222	0.140	0.048	1.078	0.152	0.091	
Guaranteed Price	-0.920***	0.899***	-0.938	-0.339	-0.194	-0.386*	
Voluntary Programs	0.186	0.009	0.201	0.405	0.220	-0.117	
Obligations	1.029***	-0.027	-0.031	0.599	-0.283	0.333**	

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1088674

Oil Price and Inventive Activity

Summary of Preliminary Evidence on Determinants of Innovation

- Prices matter i.e. barrel of oil for renewable energy generation and fuel price for motor vehicles
- But for technologies which are less mature (e.g. solar concentrating power or electric vehicles) public expenditures on R&D are important
- In addition less mature technologies require 'certainty' in policy incentives in order to induce innovation (e.g. price vs quantity incentives, and general policy stability) see http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370336
- General scientific capacity in all areas is the biggest 'driver' of innovation

Downstream Effects of Innovation Knowledge Stock and Energy Efficiency in Power Plants

Effect of Innovation of Energy Efficiency in the ESI Sector

	(1)	(2)	(3)	
Coal Share / Total Input	-0.0209***	-0.0197***	-0.0195***	
Capacity Utilization Ratio	0.0762***	0.0677***	0.0655***	
Average Capacity Increase from t-5	0.0108***	0.0102***	0.0098***	
Knowledge Stock (CP)	0.0472***			
Knowledge Stock (CP - SIN)		0.0432***		
Knowledge Stock (CP - SIN - DUP)			0.0392***	
Constant	-1.2495***	-1.2655***	-1.2592***	
Adj.R-Square	0.83	0.84	0.84	
Ν	535	535	535	

Top Ten Source and Recipient Countries of CC Technologies

(Number of duplicate patent filings, 1985-2004)

	Recipient	US	DE	JP	CN	CA	KR	AU	BR	TW	GB
Source											
JP		6504	2641	-	2040	505	1891	412	67	902	302
DE		3589	-	1976	938	772	380	441	509	111	476
US		-	1815	1826	823	1925	370	818	460	206	375
GB		780	526	350	149	291	65	205	88	24	-
KR		812	69	777	619	14	-	48	5	74	33
FR		363	389	186	99	190	43	101	98	9	13
IT		210	199	89	59	49	9	34	67	8	22
NL		140	145	65	45	69	13	54	34	2	7
AT		115	228	44	24	32	10	30	20	3	5
SE		113	95	23	28	47	6	48	27	4	5

Transfer of Climate Change Mitigation Technologies amongst Annex 1 Countries

Transfer of Climate Change Mitigation Technologies to non-Annex 1 Countries

Transfer of Solar Power Technologies to China

(% of country's worldwide transfer)

Climate Change Policies and Transfer (Negative binomial regression, with fixed effects)

Dependent variable: CCTT_ijt	<i>i</i> = Annex1 <i>j</i> = non-Annex1 with DNAs <i>t</i> =2000-2006			
Degree of Involvement in CDM Projects (CDM_ijt)	3.97E-07*			
Absorptive Capacity (CCPAT_jt)	2.40E-03***			
Available Stock of Inventions (ASTOCK_it)	6.41E-04***			
Electricity Consumption (CONS_jt)	2.16E-06***			
Total Technology Transfer (TOTALTT_ijt)	8.38E-04			
Intercept	-6.5121***			
Ν	8440			
Log pseudolikelihood	-509.47			
(Prob > Chi2)	0.000			

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1370362

Related Work and Next Steps

• Further assessment of the determinants (including policy design) of innovation in CC mitigation technologies in different areas;

• Analysis of the economic (e.g. energy efficiency) and environmental (e.g. CO2 emissions) implications of such innovation;

• Analysis of the determinants of transfer of CC mitigation technologies – relative prices, climate policy, int'l cooperation, absorptive capacity, economic 'openness', IPRs, etc.; and,

• Use of micro-data (Orbis/Amadeus) to analyse firm-level determinants of innovation and transfer

