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Structure of presentation
• Technological transitions

• What are they?
• How do they come about?

• Technological transitions, energy and climate 
change
• Why do we need one?
• What sorts of technologies/changes will be involved?
• What might a 2050 energy system look like (after a 

technological transition)?

• How might a low-carbon technological 
transition be brought about?



What is a technological transition?
• A technological transition is a process whereby 

a pervasive technological system in a society 
undergoes fundamental change
• Pervasive: is important for basic societal functioning
• System: involves more than one technology, usually 

with elements of infrastructure
• Fundamental: the functioning of society is greatly 

altered
• Examples

• Sailing ships to steam ships
• Horse-drawn to horse-less carriages (i.e. Cars)
• Advent of disruptive technologies

– Electricity
– Information and communication technologies

• Low-carbon energy system?



How does a technological 
transition come about?

Two examples of theories:

• Multi-level system change involving 
niches, regimes, landscapes (Geels)

• Alignment/co-evolution of social sub-
systems (Freeman & Louca)



Technological regimes
• Regime stability/’lock-in’: learning by using; 

network externalities; economies of scale; 
increasing informational returns; deployment of 
complementary technologies (Arthur 1988, 
p.591)

• Change in socio-technical configuration (Geels
2002, pp.94-5)
• Economics: price, performance, user preferences
• Sociology: actors, interactions, institutions, context 

(also related to existing technology/socio-technical 
configuration)

• Socio-technical: large technical systems, networks



Technological transitions - Geels
• Interactions between three levels

• Landscapes: strong, underlying features of ideology, 
culture, value systems and policy (e.g. role of state 
market, ideas of justice/fairness; change slowly

• Socio-technical regimes: interlocking structures of 
technologies, infrastructures, social practices and 
behaviours; stable, because of ‘lock-in’

• Niches: small markets or protected spaces in which 
new technologies develop – or not; most niches 
remain just that, and ultimately disappear

• Under certain conditions niches can destabilise 
and ultimately displace a socio-technical 
regime



The development of niches 
(Geels 2002a, Figure 3.6, p.110, 2005)
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Co-evolution of social sub-systems –
Freeman and Louca

• Need for co-evolutionary alignment between different interacting sub-
systems (Freeman & Louca 2001)
• Science, technology, economy, politics, culture: application to Kondratiev cycles

• The Physical Dimension, which deals with the physical issues involved 
in the production/storage/distribution/end use of the good or service 
under consideration, and has the following components:
• Science the physically possible
• Technology physical realisation of the physically possible
• Infrastructure physical (including technical) support and diffusion of 

the physical realisation

• The Socio-Economic Dimension, which deals with the interests and 
drivers that push technical change along: entrepreneurs (and profits), 
consumers (and preferences), and public policy pressures, and has the 
following components:
• Economics issues of allocation, distribution, competition
• Institutions legal, financial, regulatory, planning frameworks
• Political Drivers social perceptions driving political priority (security of 

supply, environmental issues) and the planning system, and the policy 
instruments through which these perceptions are implemented

• Culture social perceptions driving social acceptability, consumer demand
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Technological transitions, energy and 
climate change - why do we need one?

• Avoiding ‘dangerous anthropogenic climate 
change’

• Pre-industrial CO2 concentrations : 280 ppm
• Current CO2 concentrations: 380 ppm
• Current GHG (CO2e) concentrations: 430 ppm
• Rate of GHG concentration increase: 2.5 ppm p.a.
• Current global average temperature increase since 1900: 

0.7oC
• Target temperature increase for ‘acceptable’ climate change: 

2oC
• Probability that this will be exceeded at 450ppm: 80%



The climate implications of where we‘re headed:          
The next 100 years compared to the last 400

Continuation of recent trends (middle of band) 
leads by 2100 to temperatures not reached since 
the Eocene (25-35 million years ago), when sea 
level was 20-30 m higher. 

A2

B1

Source: Professor John Holdren, Harvard University



Fossil fuel related emissions: BAU and emission 
abatement scenario (GtCO2)

0
10
20
30
40
50
60
70
80

2000 2025 2050 2075

G
tC

O
2

BAU emissions

Abatement scenario

Emissions scenario to limit 
temperature change

Source: Stern Review, Part III, Chapter 9



The necessary improvements in 
carbon productivity

• Carbon productivity = GDP/carbon; carbon intensity = carbon/GDP
• Carbon intensity of energy = carbon/energy
• Carbon emissions = Population * GDP/capita * carbon/GDP
• To reduce carbon emissions, reduce either carbon intensity of 

energy or energy intensity of GDP or both
• To achieve 450ppmv atmospheric concentration of CO2, assuming 

ongoing economic and population growth (3.1% p.a. real), need to
increase carbon productivity by a factor of 10-15 by 2050, or approx. 
6% p.a.

• Compare current increase in carbon productivity of 0% p.a. over 
2000-2006, i.e. global carbon emissions rose at 3.1% p.a.; also

• Compare 10-fold improvement in labour productivity in US over 
1830-1955, must achieve the same factor increase in carbon in 42 
years
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What sorts of technologies/changes will 
be involved – the Socolow ‘wedges’



Potential “wedges”: cuts of 1Gt of carbon per 
year in 2054
• Efficient vehicles: Increase fuel economy for 2 billion autos from 30 to 60  mpg.

• Nuclear: Tripling of capacity to 1050 Gwatts.

• Gas for coal substitution: 1400 Gwatts of electricity generation switched from coal to 
gas.

• Carbon capture and storage: Introduce CCS at 800 Gwatt coal stations

• Wind power: 50 times as much wind power as at present.

• Solar PV: 700 times 2004 capacity 

• Hydrogen: Additional 4000 Gwatts of wind capacity or additional CCS capacity

• Biomass fuel: 100 times the current Brazilian ethanol production

Source: Professor Robert Socolow “Stabilisation Wedges”
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What might a 2050 energy system look 
like (after a technological transition)?
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What might a 2050 energy system look 
like (after a technological transition)?

Sectoral CO2 emissions in years 2000, 2035, 2050 in different scenarios
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What might a 2050 energy system look 
like (after a technological transition)?

Final energy demand under different carbon constraints
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What might a 2050 energy system look 
like (after a technological transition)?
Electricity generation mix under different carbon constraints
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What might a 2050 energy system look 
like (after a technological transition)?

Sectoral biomass under different carbon constraints
Energy 2050 – www.ukerc.ac.uk
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How might a low-carbon technological 
transition be brought about?

• An unprecedented policy challenge: the Stern 
Review Policy Prescription

• Carbon pricing: carbon taxes; emission trading
• Technology policy: low-carbon energy sources; 

high-efficiency end-use appliances/buildings; 
incentivisation of a huge investment programme

• Remove barriers to and promote behaviour change: 
take-up of new technologies and high-efficiency 
end-use options; low-energy (carbon) behaviours 
(i.e. less driving/flying/meat-eating/lower building 
temperatures in winter, higher in summer)



The (micro)economic cost: global cost curve for 
greenhouse gas abatement  

Source: A cost curve for greenhouse gas reductions, The Mckinsey Quarterly, February 2007



Cost evolution and learning rates for 
selected technologies

Source: IEA, 2000, Stern Review, Chapter 9



Policies for carbon reduction

• Huge policy innovation over the last ten years; we 
know what to do

• Limited results from these policies; we don’t apply the 
policies hard enough

• Carbon emissions still rising in most industrial (let 
alone developing) countries

• Many policies need local implementation/enforcement
• (Much) More stringent application of policy instruments 

(especially price-based to avoid rebound effects)
• Political feasibility
• Implications for economic growth

23



The macro-economic costs of climate 
change mitigation
• Optimists:

• ‘Costs’ are really investments, can contribute to GDP growth
• Considerable opportunity for zero-cost mitigation
• A number of low-carbon technologies are (nearly) available at low 

incremental cost over the huge investments in the energy system that 
need to be made anyway

• ‘Learning curve’ experience suggests that the costs of new 
technologies will fall dramatically

• Climate change policies can spur innovation, new industries, exports 
and growth

• Pessimists:
• Alternative energy sources are more expensive, are bound to 

constrain growth
• Cheap, concentrated energy sources are fundamental to industrial

development

24
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Policy conclusions
• Attaining the 2oC target or anything near it will require huge investments 

in low-carbon technologies right along the innovation chain (research, 
development, demonstration, diffusion).

• IEA ETP estimates of additional investment needs in energy sector: USD 
45 trillion (1.1% global GDP from now until 2050)

• Buildings and appliances: USD 7.4 trillion; Power sector: USD 3.6 trillion
• Transport sector: USD 33 trillion; Industry: USD 2.5 trillion

• Government funding of R,D&D must increase dramatically, but 
demonstration and diffusion can only be driven at scale by markets

• This will require high (now) and rising carbon prices over the next half 
century, to choke off investment in high-carbon technologies (e.g. 
runways) and incentivise low-carbon investments

• These high carbon prices will also greatly change lifestyles and
consumption patterns

• Provided that the world goes cooperatively in this direction, there are 
enormous profits to be made from these high carbon prices and changing 
consumptions patterns

• Technological and policy uncertainty mean that the risks are also high

26



Overall conclusions
• The innovation potential exists for a transition to a low-

carbon energy system to be technologically feasible, 
economically feasible

BUT
• It requires sustained, wide-ranging, radical policy 

interventions to bring about technological revolution and 
change lifestyles. 

• These interventions are resisted by affected economic 
sectors (e.g. energy) and households who want to keep 
current lifestyles (e.g. transport), or attain Western 
lifestyles

• Politicians may not be able to bring about a low-carbon 
technological transition before runaway climate change


