Teoria dei giochi

 Ci aiuta ad analizzare i comportamenti degli agenti economici che si trovano ad interagire tra loro.

Decision theory

Game Theory

Game theory

- ... a collection of tools for predicting outcomes of a group of <u>interacting agents</u> where an action of a single agent <u>directly affects the payoff of other participating agents</u>.
- ... the study of multiperson decision problems. (Gibbons)
- ... a bag of analytical tools designed to help us understand the phenomena that we observe when decision-makers interact. (Osborne and Rubinstein)
- ... the study of mathematical models of conflict and cooperation between intelligent <u>rational</u> (self interested) decision-makers. (Myerson)

Game

1. The <u>players</u> who are involved.

2. The <u>rules of the game that specify the sequence</u> of moves as well as the possible actions and

information available to each player whenever they move. (<u>strategies</u>)

3. The <u>outcome</u> of the game for each possible set of actions.

4. The (expected) payoffs based on the outcome.

Different games

- Non cooperative
- Cooperative
- Game with complete information
- Game with incomplete information (auction/ sealed bid – you don't know how valuable is a good for other bidders)
- Game with perfect information (chess bargaining)
- Game with imperfect information
- Zero (costant) sum game (divide a pie)
- Non zero sum game
- Static game
- Dynamic game

Nash equlibrium

 Un insieme di strategie, una per giocatore, è un Nash equilibrio se, data la strategia scelta dagli altri, nessuno ha interesse a cambiare la propria.

Definition 6 A Nash Equilibrium (NE) is a profile of strategies (s_i^*, s_{-i}^*) such that each player's strategy is an optimal response to the other players' strategies:

 $\pi_i(s_i^*, s_{-i}^*) \ge \pi_i(s_i, s_{-i}^*)$

Static game – complete information (prisoner's dilemma)

Prisoner 2

Normal form

Game tree

Static game – complete and imperfect information

a\b	T1	T2
S1	6,4	3,5
S2	5,3	2,2

Equilibrium?

S1T1	NO given a S1	b – T2	
S1T2	NE given b T2	a – S1 , given a S1	b – T2
S2T1	NO given b T1	a — S1	
S2T2	NO given a S2	b – T1	

Dominated stategies

a\b	T1	T2	T3
S1	3,4	0,4	4,-2
S2	4,2	1,1	-1,1

Step 1a don't have dominated strategiesStep 2B – T3 is dominated (T1 always better)Step 3Without T3 for a S1 is a dominated strategyNE S2T1

Battle of sexs

M\F	S	Ο
S	5,2	1,1
0	0,0	2,5

We have 2 NE – we need another criterium to decide

Mixed strategies

No NE in pure strategies

a\b	(β) L	(1-β) R
(α) Α	0,0	0,-1
(1-α)B	1,0	-1,3

NE in Mixed strategies $E\pi a(\alpha^*, \beta^*) \ge E\pi a(\alpha, \beta^*)$ $E\pi b(\alpha^*, \beta^*) \ge E\pi b(\alpha^*, \beta)$

solution

a – suppose b plays L prob. β and R prob (1- β)

```
Eπa(A) = 0x \beta + 0 (1- \beta) = 0
Eπa(B) = 1x \beta + (-1) (1- \beta) = 2\beta -1
When is a indifferent?
Eπa(A)= Eπa(B) => 0=2\beta -1 => \beta=1/2
If \beta>1/2 a plays B if \beta<1/2 a plays A
```

The same for B b - suppose a plays A prob. α and B prob. (1- α)

```
Eπb(L) = 0x \alpha + 0 (1- \alpha) = 0
Eπb(R) = (-1)x \alpha + 3(1- \alpha) = 3-4 \alpha
When is a indifferent?
Eπb(L)= Eπb(R) => 0= 3-4 \alpha => \alpha=3/4
If \alpha >3/4 b plays L if \alpha <3/4 a plays R
```


NE in mix strategies a => (A prob ³/₄, B prob ¹/₄) b=> (L prob ¹/₂, R prob ¹/₂)

dynamic game – complete and perfect information

a\b	T1	T2
S1	6,4	3,5
S2	5,3	2,2

Dynamic game with complete and perfect information

a first move b has 4 strategies

a\b	T1T1	T1T2	T2T1	T2T2
S1	6,4	6,4	3,5	3,5
S2	5,3	2,2	5,3	2,2

(S1, T2T2) NE no sub game perfect (S2, T2T1) NE SGP If B first

a\b	T1	T2
S1,S1	6,4	3,5
S1,S2	6,4	2,2
S2,S1	5,3	3,5
S2,S2	5,3	2,2

NE (T2, S1S1) SGP (T1, S1S2) no SGP (T2, S2S1) no SGP

Game with incomplete information (static)

- A new CEO has been hired. He can be good or bad
- There is CFO close to retirement and is tired, he prefers not to work hard
- But if CEO detect him he doesn't get the annual bonus
- CEO good means higher profits and lower cost effort to control CFO
- CEO = A CFO = B

L

we have 2 games

	G000			Bad	
	W	NW		W	
С	5;2	4;1	С	4,2	
NC	6;2	3,5;3	NC	5,2	

- How can I find an Equlibrium?
- I change the Game in one with complete but imperfect information

if P>1/2 [W,(NC,NC)] B work and A doesn't control (Bayesian NE)

Repeated Prisoner's dilemma

a\b	Lb	Hb
La	10;10	1;11
На	11;1	3;3

R is a dominated strategy

Play 2 times

First NE (H both games)

Other: first period play L and second H

if you in the first L otherwise R)

Pay off if no deviations (10+3)

If deviation (11+1) non convinient

But not SGP, not credible

NE (Ha;Hb) Max profit (La,Lb) How to increase profit? Change game

a\b	Lb	Hb	R
La	10;10	1;11	0,0
На	11;1	3;3	1,0
R	0,0	0,1	0,0

What if...

- We repeat the game T times?
- Nothing Change because in period T we will end up

a\b	Lb	Hb	R
La	10;10	1;11	0,0
На	11;1	3;3	1,0
R	0,0	0,1	0,0

- Where Ha, Hb is the only equilibrium will be in T-1
- It is not a credible threat

What if...

- We play ∞ times?
- No last period, no backward!
- Suppose we set a strategy: we play La if you play Lb but if you one play Hb we will punish you with R
- So
- a 10,10,10, 1,0,0,0,0,0
- b 10,10,10,11,1,1,1,1,1
- To have an equilibrium you have compare what you gain from deviating today and what you loose from tomorrow onward.
- Is it to "hard"? It could be also Ha so both get b that has an outcome of 3 that is lower than 10
- But it is not renegotiation prof.

Commitment

Doomsday

Dr. Strangelove

Entry Game

Consider the following entry game

Commitment

- Backward induction equilibrium (e, a)
 Polaroid's payoff is 50
- Suppose Polaroid commits to fight (f) if entry occurs.
- What would Kodak do?
- Kodak would not enter and Polaroid would be better off
- Is this commitment credible?

Credible Commitments: Burning Bridges

- In non-strategic environments having more options is never worse
- Not so in strategic environments
- You can change your opponent's actions by removing some of your options
- 1066: William the Conqueror ordered his soldiers to burn their ships after landing to prevent his men from retreating
- 1519: Hernan Cortes sank his ships after landing in Mexico for the same reason

Sun-tzu in The Art of War, 400 BC

At the critical moment, the leader of an army acts like one who has climbed up a height, and then kicks away the ladder behind him.

Commitment

How can you achieve credible commitment in the entry game?

- Change the game
 - Change payoffs
 - Remove accommodate as an option
- Change others' beliefs about your payoffs or options
 - Build reputation for toughness
 - Delegate to a tough CEO

Delegation

- Delegate the decision to a CEO who is known to be aggressive
- Or tie his compensation to market share
 - Pay 10 if market share is above 50%
 - Otherwise pay 5

- What is the BIE?
- Contract must be observable, non-renegotiable

Primo assignment

Portate un esempio in ambito economic/business di:

- 1. Dilemma del prigioniero
- 2. Battle of sexs
- 3. Game with incomplete information
- 4. Entry game

Consegna via email entro 23:59 del 6 ottobre