
1

A GENERAL OVERVIEW OF STATA AND COURSE MATERIAL

Maria Elena Bontempi e.bontempi@economia.unife.it

Roberto Golinelli roberto.golinelli@unibo.it

this version: 26/09/2007§

1. Introduction ...1
1.1. A guide to the lectures ..1
2. Features of Stata ..3
3. Facilitating applied economic research with Stata...4
4. Updating and software development in Stata ..5
4.1. Stata web site..6
5. How to use Stata: introduction ..7
5.1. How to use Stata: command syntax..10
5.1.1. The output of a data-descriptive command..10
5.2. Command syntax: the varlist ..13
5.3. Command syntax: exp clause ...13
5.4. Command syntax: if and in clauses ..14
5.5. Command syntax: bysort and sort ..15
5.6. Command syntax: the using clause...18
6. Loading external data and creating a file.dta ...21
6.1. Use of the editor for file.xls..21
6.2. Insheet command for file.prn, file.raw, file.csv (comma-separated)...25
6.3. Infile command for file.asc, file.raw (ASCII format) ...25
6.4. The Stat/Transfer software ...28
7. Working with panel and time-series: basics ..28
8. Working with commands’ results and some preliminaries on programming...31
9. An overview of useful commands ...35

1. Introduction
The present file and the others listed below were prepared as a guide for a course of applied econometric;

empirical exercises make use of the statistical-econometric software STATA.

1.1. A guide to the lectures
This note presents the main STATA features, the different STATA files, and the supporting tools which is

important to know in order to run empirical analyses. This document refers to a number of different files: data-files

(wage1.dta, occ_1987_1.dta, occ_1987_2.dta, occ_1987.dta, occ_1988.dta, Usquarter.dta, NYTdailysales.dta,

occupati_Italia.xls, auto.prn, auto.raw, auto_c.raw, auto_cc.raw); data-describing-files (auto_c1.dct, auto_c2.dct,

auto_cc.dct); programming-files (dsett_label.do, covaun.ado, covamu.ado, covamu1.ado, reg_matrix.ado).

Along with this note, other lectures are the following.

 Techniques for analysing your data, e.g., data checking, getting familiar with your data file, and examining the

distribution of your variables: lecture_exploratoty_data_analysis.

 Topics on simple and multiple regression, demonstrating the importance of inspecting, checking and verifying your

data before accepting the results of your analysis: lecture_OLS_bivariate, lecture_OLS_multivariate,

lecture_nonlinearity_Chow.

 Topics on heteroskedasticty and errors correlated with the explanatory variables: lecture_GLS, lecture_IV.

 Topics on time-series analysis, and model specification and estimation: lezione_seriestoriche_in_stata.

§ Very preliminary. Comments welcome. Thanks to the work of C. F. Baum and of UCLA (see section 4 for references).

2

 Topics on panel data: lecture_panel_theory, lecture_panel_static_application, lecture_panel_dynamic_application.

These notes want to cover a variety of topics about using Stata for regression: they are about "data analysis" and

demonstrate how Stata can be used for regression analysis, as opposed to a book that covers the statistical basis of

multiple regression.

It is assumed that you have had at least one statistics course covering regression analysis and that you have a regression

book that you can use as a reference. In fact, the notes are designed to apply your knowledge of regression, to combine

it with instruction on Stata, to perform, understand and interpret regression analyses.

The commands reported in the notes work on updated versions 7 or 8 of Stata. However, some commands,

such as xtabond2, are written to take advantage of the Mata programming language first included in Stata 9. Hence,

the updated version 9.2 of Stata is highly recommended. In what follows some of the important new additions of Stata

9.

 New matrix programming language Mata, that can be used by those who want to think in matrix terms and perform

matrix calculations interactively, and it can be used by programmers who want to add features to Stata.

 New features in the longitudinal/panel data: new command xtmixed that fits linear mixed models, also known as

hierarchical models or multilevel models; new features added to the maximum-likelihood estimators that do not

have closed-form solutions and require numeric evaluation of the likelihood (xtlogit, xtprobit,

xtpoisson, xtcloglog, xtintreg, xttobit); existing command xtreg now allowing options

robust and cluster() when estimating fixed-effects (FE) and random-effects (RE) models; most [XT]

commands now supporting time-series operators (xtgls, xtreg, xtsum, xtcloglog, xtintreg,

xtlogit, xtpoisson, xtprobit, xttobit, xtgee); many commands requiring time-series data

now working on a single panel from a panel dataset when that panel is selected using an if expression or an in

qualifier (ac, corrgram, cumsp, dfgls, dfuller, pac, pergram, pperron, wntestb,

wntestq, xcorr and new commands estat archlm, estat bgodfrey, estat dwatson,

estat durbinalt - replacing commands1 archlm, bgodfrey, dwstat, durbina).

 New features in the time-series statistics: existing command dfuller having new option drift for testing the

null hypothesis of a random walk with drift, and having more accurate algorithm for calculating MacKinnon's

approximate p-values; existing commands corrgram and pac having new option yw that computes partial

autocorrelations using the Yule-Walker equations instead of the default regression-based method; existing

command arima now estimating multiplicative seasonal ARIMA (SARIMA) models; new command rolling

performing rolling-window or recursive estimations, including regressions, and collecting statistics from the

estimation on each window; the [TS] manual having a glossary that defines commonly used terms in time-series

analysis; new command vec fitting cointegrated vector error-correction models (VECMs) using Johansen's

method; new command vecrank producing statistics used to determine the number of cointegrating vectors in a

VECM, including Johansen's trace and maximum-eigenvalue tests for cointegration; new command fcast -

which replaces old command varfcast - producing and graphing dynamic forecasts of the dependent variables

after fitting a VAR, SVAR, or VECM; new command irf - which replaces the old command varirf –

estimating the impulse-response functions, cumulative impulse-response functions, orthogonalized impulse-

1 But old commands still work.

3

response functions, structural impulse-response functions, and forecast error-variance decompositions after fitting a

VAR, SVAR, or VECM.

The synthax of the graph command has been completely revised since version 8. The (esay) syntax of version 7

is no more compatible with the syntax of Stata 8 or 9 and if you use it, you get an error message. Many tricks to use the

stata 7 graph synthax are available, illustrated in the specific lectures. For example, replace graph command with

graph7 command. Alternatively, use the command version 7: graph. Alternatively, type the sequence:

version 7

graph

version 9

When possible, some examples of the stata 8/9 graph synthax are reported; this because stata 8/9 graphs are superior,

maybe the time-series case excluded. An online tutorial about creating basic graphs in STATA 8/9 is available at the

website http://www.stata.com/support/faqs/graphics/gph/statagraphs.html.

Stata 10 is now available, visit http://www.stata.com

2. Features of Stata
You can install 3 different version of Stata.

Stata/SE, Intercooled Stata, and Small Stata differ in the size of the dataset that each one can analyze and the maximum

length of string variables. Here is a general guideline:

 Stata/SE — Stata for large datasets

Stata/SE allows datasets with up to 32,766 variables. The limit of observations is based on the amount of RAM in your

computer. Stata/SE allows datasets to contain longer string variables — variables up to 244 characters long. Stata/SE

also allows matrices up to 11,000 x 11,000 on computers with sufficient memory. An implication of this is that Stata/SE

can estimate models with more independent variables (up to 10,998) and estimate certain panel-data models with larger

time-series within panel.

 Intercooled Stata — the "standard" version of Stata

Intercooled Stata allows datasets with as many as 2,047 variables. The limit of observations is based on the amount of

RAM in your computer. Intercooled Stata allows string variables to contain a maximum of 80 characters. In addition,

Intercooled Stata can have at most 798 right-hand-side variables in a model.

 Small Stata — a smaller, "student" version of Stata (academic only)

Small Stata is limited to analyzing datasets with a maximum of 99 variables on approximately 1,000 observations.

Small Stata allows string variables to contain a maximum of 80 characters. Small Stata can have at most 38 right-hand-

side variables in a model.

Requirements

Stata/SE Intercooled Stata Small Stata

Memory 128 MB 128 MB 128 MB

Disk space 60 MB 60 MB 60 MB

4

3. Facilitating applied economic research with Stata
Applied empirical research in economics and finance has traditionally involved the use of two types of high-level

software. Each type has its strengths and weaknesses. In this essay, we describe the middle ground.

 Statistical/econometric packages, such as TSP, SAS, RATS or eViews

Advantages

 They provide a variety of econometric procedures, with well-formatted results, batteries of diagnostics, and pre-

designed graphical output.

 Data series may be referred to by name, and missing values and transformations such as lags and differences may

be readily handled.

Disadvantages

 Extending the context of these packages (adding estimation procedures, customising output, or reusing the results

of computed quantities) may be difficult, and almost without exception the user-provided extensions to statistical

packages will require special handling.

 User-written procedures will not be “first–class citizens” in most statistical package environments: they require

modifications to make them available within the package; they do not always include comment statements

providing on-line help.

 Hence, it may be a hard work to utilise a very recently developed econometric procedure that has not yet been

implemented.

 Matrix languages, such as MATLAB, GAUSS, S-Plus or Ox.

Advantages

 They circumvent the restrictions posed by the defined feature set of statistical packages. They have extensibility:

you may translate any complex sequence of matrix operations into the language, without the explicit loops or

extensive libraries that would be required in C, C++, or Fortran 90. Hence, the matrix languages support more rapid

development and allow for interactive use.

Disadvantages

 The execution speed: most (with the notable exception of Ox) are quite slow, even on powerful hardware.

 They impose on you a greater housekeeping burden, since the convenience features of the statistical packages’

languages are generally absent. You must explicitly keep track of the correspondence between named variables and

columns of matrices, take account of observations lost through lags, differences, and the handling of unbalanced

panel data, and provide much of the logic for the formatted output of results.

 Hence, the matrix languages conceptually support reusable code, but it appears to be relatively scarce in practice2.

For example, many researchers will provide the GAUSS code used in their work on request, but those routines,

almost without exception, contain explicit references to the particular problem they have solved in terms of the

dimensions of the problem, the specific files accessed, and the specific form of the output.

2 A notable exception is James P. LeSage’s Econometrics Toolbox for MATLAB (http://www.spatialeconometrics.com/), which
provides an exhaustive set of econometric routines for MATLAB, with full documentation and an extensible development
environment, at zero cost.

5

 They rely on numerous components, each sold separately (MATLAB “toolboxes” or GAUSS “applications”),

implying that most users will have a different set of available functions in their copy of the language.3 The matrix

languages are generally more constrained in terms of cross-platform availability than are many statistical packages.

 The Stata software environment, a product of Stata Corporation (College Station, TX:

http://www.stata.com)

 Stata provides a unique middle ground between “point and click” statistical packages and “open-ended” matrix

languages. Stata has a defined feature set and it is easy to use. Stata has extensibility, and provides web-accessible

features that enhance collaborative research and instruction.

 Like its major competitors (SAS, SPSS, RATS, TSP, Eviews), Stata offers a wide range of statistical and

econometric capabilities for the researcher who merely wants to plug in the data and execute a routine statistical

analysis.

It allows the user to name variables, operate on variables with wildcard syntax, and rely on the program to keep

track of missing values, lags, and the messy details of unbalanced panel data.

Advanced features include the ability to transform “wide” data (such as those used in seemingly unrelated

regression estimation) into “long” data (that which has been stacked by column with the “vec” operator), suitable

for panel data estimators such as fixed effects and random effects.

Stata provides a broad set of preformatted output routines, so that the user need not specify the format and

perform housekeeping troubles in order to generate all of the items needed for presentation of the results at the

desired precision.

 Unlike some statistical packages, Stata operates in a vector context, so that transformations (generating new

variables and revising existing variables) are specified without explicit loops that carry a speed penalty. The entire

dataset is held in memory, so that transformations and most estimation procedures are very fast, even when

hundreds of thousands of observations are defined. This implies the need for sizeable memory resources, but the

cost of relaxing that constraint today is quite minimal for most systems.

 Stata diverges from statistical packages and from matrix languages (MATLAB, GAUSS, Ox) by promoting its

extensibility, and providing explicit support for the development and dissemination of procedures crafted by its

user community.

 The core functionality of the package itself may be readily upgraded by its vendor between major releases: as we

will see, the upgrades may be readily acquired and installed by the user base. Stata is a rapidly evolving software

environment, in which researchers collaborate from diverse locations, rely on other Stata users for assistance,

implement new capabilities, and interchanged them via the package’s Internet-access features.

4. Updating and software development in Stata
The preponderance of Stata commands are provided by several hundred separate “ado–files”: automatic do–

files, or procedures, which are plain text files and whose names correspond to user commands. These files are in a

“adopath”: a Unix-like path containing a number of directories, each of them containing specific ado-file for specific

command.

3 Jurgen Doornik’s language (http://www.nuff.ox.ac.uk/Users/Doornik/doornik.html#ox) is better placed in this regard, in that
additional packages in that environment are generally freely downloadable.

6

This design promotes timely updates to the software. This can be done by copying the corrected files to the appropriate

locations, or automatically. Suppose you have installed version 9 and you have an Internet access. It is very easy, at any

time, to evaluate the status of your copy versus the most recent available, and to instruct Stata to query the vendor’s site

for updates.

. update query
(contacting http://www.stata.com)

Stata executable
 folder: C:\Programmi\Stata9\
 name of file: wsestata.exe
 currently installed: 17 May 2006
 latest available: 6 Jul 2006

Ado-file updates
 folder: C:\Programmi\Stata9\ado\updates\
 names of files: (various)
 currently installed: 17 May 2006
 latest available: 11 Jul 2006

Recommendation
 Type -update all-

Click to edit automatic update checking preferences
--

You can also make extensively use of utility routines not provided in “Official Stata”. An extensive library of user-

written commands, documented in the over the last ten years, is freely accessible from Stata’s web site. A continuously

expanding archive of user-written additions to Stata is available, for example, at:

 the Boston College Statistical Software Components (SSC) archive (http://fmwww.bc.edu/EC/), which provides

free access to several hundred Stata modules; this site is maintained by Christofer F. Baum;

 University of California Los Angeles (UCLA) Academic Technology Services (ATS) and UCLA Stat Computing

Portal (http://www.ats.ucla.edu/stat/).

It is very easy incorporating user-authored components into your copy of Stata. The ado–files and associated help files

for these new commands may be downloaded, installed in the appropriate directory (“ado/stbplus”). Hence, the

commands defined therein will become first–class citizens in the Stata command language.

Finally, you can create by yourself your personal ado files in directories such as “ado/personal”. The only warning

is that a user-written command may not take the name of an “official” Stata command, in order to prevent confusion.

There is an innovative concept underlying this structure: a user-written command, whether downloaded from the Stata

web site, acquired from a colleague, or written oneself is indistinguishable from any “official” Stata command once it is

placed on the “adopath”.

Stata’s developers have promoted the development of this quality work in the user community by providing high–level

tools for ado–file development: the same tools that they themselves employ.

4.1. Stata web site
At web site www.stata.com you may find.

 Commercial information

 FAQs section

 Net courses

7

 Statalist, a free email listserver where over 2,000 Stata users from experts to neophytes maintain a lively dialogue

about all things statistical and Stata. You can subscribe by sending an email to majordomo@hsphsun2.harvard.edu

and ask particular questions. (unsubscribe if you we be away of your email for few days). Since 1997, all items

posted to Statalist (over 600) have been placed in the Boston College SSC Archive in RePEc

(http://ideas.repec.org) and EconPapers (http://econpapers.repec.org).

 The Stata Technical Bulletin (STB) that, between 1991 and 2001, served as a means of distributing new commands

and Stata updates, both user-written and “official”. Since 2001, the STB evolved into The Stata Journal, a quarterly

publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata's

language. The Journal publishes reviewed papers together with shorter notes and comments, regular columns, book

reviews, and other material of interest to researchers applying statistics in a variety of disciplines.

5. How to use Stata: introduction
Stata has many strengths:

 cross-section, time series and panel data manipulation

 statistical analysis

 graphical analysis

 econometric analysis

Stata files are:

binary data-set (.dta)

-optional:

file in which you can save your output (text file .log, or for use with Viewer .smcl)

graphics output file (.gph)

user program file (.do)

automatic do-file, that defines a Stata command (.ado) with an accompanying help file (.hlp) with instructions

ASCII data file (.raw, .cvs, .txt) and data dictionary file for describing data-set to be read by Stata with infile (.dct) (see

Section 6).

Stata has 4 windows:

Variables: you see the list of the variables in the data-set you are using.

Command: you type the commands.

Review: you have the list of the executed commands; you may re-use them by double click; you may modify them by

single click.

Results: you see the output, i.e. the results obtained by running the commands.

Before starting your working session, It is preferable that you select a particular directory. Let's say you are using

Windows and you want to store the data file in a folder called c:\myanalysis. First, you can make this folder within

Stata by the command:

mkdir c:\myanalysis

You can then change to that directory:

cd c:\myanalysis

8

IMPORTANT: You have reproducibility and extendibility of what you have done (i.e. what you gradually see in the

review and results windows) by opening a file.log before starting your working session:

log using mylog.log

This file permanently saves on your computer a report with all the commands you have run4 and the corresponding

output (only note that graph files have to saved separately). This file may be read and manipulated by every word

process, becoming the relevant part of your applied research report. More useful, you may open and manipulate your

log file in the “do-file editor”: leaving only the commands you have entered, you create, save and execute a mydo.do

file, i.e. a sequence of commands that you can apply to every data-set you want.

If you type:

log using mylog

by default Stata uses the .smcl extension, i.e. the stata markup and control language; this is nice to be read and printed,

but not useful for word processor or the “do-file editor”.

Notice: commands and variables’ names are key sensitive: for example, OCC is a variable different from occ or Occ.

Usually do not use capital letters for commands.

Stata works in memory. Thus, may be important to select how much memory is needed in order to use the data-set and

to perform the analyses you are interested in. For example:

set mem 10m

The command for opening a Stata data-set is

use mydata, clear

where the option clear (see Section 5 on Stata syntax) will empty the current content of memory.

Once you have read the data file, you probably will modify it and want to store the changes:

save mydata, replace

where the option replace (see Section 5 on Stata syntax) will overwrite the current data-set.

You may also use the Stata menu. The menu is useful for interacting with the computer’s file system, for managing

multiple windows, for changing screen defaults, for printing results and graph, and the like. Innovative in Stata 8 or 9 is

that you may also run commands by using menus; in this case you have a direct access to the help. You maintain

reproducibility and extendibility of what you have done through both the review window and the file.log. However, we

think it is preferable typing commands as a more effective and efficient research strategy, and as a more rigorous way of

learning estimating techniques. In this case, if you have doubt about a command syntax, you may type:

help log

that accesses help on all installed commands.

When you are connected to the web, the command:

search log

4 The commands appear with a leading dot, a convention to indicate that the command is executed. You will find many

times this leading dot in the lectures on the web. Do not type the leading dot in the Stata command window.

9

will locate new commands that have been documented in the Stata Journals or in other web sites. With one click you

may install them in your version of Stata. With search you can find the command you need by entering one or more

keywords, even if you do not know the command’s name.

There are on-line tutorial also available:

tutorial contents Current list of available tutorials

tutorial intro Introduction to Stata

tutorial graphics How to make graphs

tutorial tables How to make tables

tutorial regress Estimating regression models, including 2SLS

tutorial anova Estimating one-, two- and N-way ANOVA and ANCOVA models

tutorial logit Estimating maximum-likelihood logit and probit models

tutorial survival Estimating maximum-likelihood survival models

tutorial factor Estimating factor and principal component models

tutorial ourdata Description of the data provided with Stata

tutorial yourdata How to input your own data into Stata

The Stata Base Documentation Set contains over 2,900 pages, including formulas and detailed examples for the most-

commonly used Stata commands. The Base Documentation Set includes a four-volume Base Reference Manual, the

Stata Graphics Reference Manual, the Stata User's Guide, the Getting Started with Stata manual for Windows,

Macintosh, or Unix (the Stata Data Management Reference Manual, and a Quick Reference and Index in Stata 9).

 Base Reference Manual (4 volumes, about 2000 pages):

Volume 1, A – F

Volume 2, G – M

Volume 3, N –R

Volume 4, S-Z

 Graphics Reference Manual (580 pages)

 User's Guide (370 pages) a first quick guide to the basic syntax on preliminary data analysis, regressions, graphs,

and an help in the use of the 4 Stata manuals

 One of the following:

Getting Started with Stata for Windows (183 pages)

Getting Started with Stata for Macintosh (177 pages)

Getting Started with Stata for Unix (190 pages)

for an introduction to Stata installation, lecture of data and print of output.

Additional subject-specific volumes may be purchased separately. These include:

 Programming Reference Manual (450 pages)

 Longitudinal/Panel Data Reference Manual (249 pages)

 Time-Series Reference Manual (440 pages)

 Survival Analysis and Epidemiological Tables Reference Manual (397 pages)

 Survey Data Reference Manual (98 pages)

10

 Cluster analysis (118 pages)

Stata 9 provides extensions of previous manuals, as well as

 Data Management Reference Manual (489 pages) brings together in one volume Stata's Data Management

commands. There you will find such advanced features as reshaping data and using ODBC, as well as such

fundamental features as merging and appending.

 Mata Reference Manual (620 pages) describes Mata, Stata's new matrix-programming language. Mata can be used

to perform matrix calculations interactively and to add new features to Stata. In fact, many of Stata 9's new features

were written in Mata.

 Multivariate Statistics Reference Manual (481 pages) documents all the multivariate analysis features added in

Stata 9, including multidimensional scaling, correspondence analysis, biplots, and many others.

 Quick Reference and Index (97 pages)

The Full Documentation Set, containing over 6,000 pages, includes everything in the Base Documentation Set, plus all

the Stata subject-specific volumes.

Cross-referencing

These manuals all cross-reference each other. All the manuals in the Stata documentation have a shorthand notation,

such as [U] for the User's Guide and [R] for the Base Reference Manual.

5.1. How to use Stata: command syntax
Stata command syntax follows strict rules; thus, once you have learned the way a few commands work, you will be able

to use many more without extensive study of the manual

The general syntax is:

[bysort varlist:] cmdname [varlist] [=exp] [if exp] [in range] [weight]
[using spec] [, options]

where elements in square brackets are optional for some commands. All the Stata commands may be abbreviated.

5.1.1. The output of a data-descriptive command
Before illustrating in detail the syntax of a Stata command, we prefer to explain the output produced by a very easy

command used to describe the data-set in use. This command is important given that it embodies the fundamentals of

data management in Stata.

As an example, we use one of the files, wage1.dta, presented in Jeffrey M. Wooldridge (2003), Introductory

Econometrics: A Modern Approach, 2e, Thomson at pages 7, 34-35, 38, 76-77, 93, 123-124, 180, 190-192, 214, 222-

223, 226-228, 232, 235, 254, 260-261, 311, 648. These data are from the 1976 Current Population Survey, collected by

Henry Farber.

use wage1, clear
describe

11

Contains data from D:\LAVORI\books\basic\WAGE1.DTA
 obs: 526
 vars: 24 16 Sep 1996 15:52
 size: 18,936 (99.8% of memory free)

 storage display value
variable name type format label variable label

wage float %8.2g average hourly earnings
educ byte %8.0g years of education
exper byte %8.0g years potential experience
tenure byte %8.0g years with current employer
nonwhite byte %8.0g =1 if nonwhite
female byte %8.0g =1 if female
married byte %8.0g =1 if married
numdep byte %8.0g number of dependents
smsa byte %8.0g =1 if live in SMSA
northcen byte %8.0g =1 if live in north central U.S
south byte %8.0g =1 if live in southern region
west byte %8.0g =1 if live in western region
construc byte %8.0g =1 if work in construc. indus.
ndurman byte %8.0g =1 if in nondur. manuf. indus.
trcommpu byte %8.0g =1 if in trans, commun, pub ut
trade byte %8.0g =1 if in wholesale or retail
services byte %8.0g =1 if in services indus.
profserv byte %8.0g =1 if in prof. serv. indus.
profocc byte %8.0g =1 if in profess. occupation
clerocc byte %8.0g =1 if in clerical occupation
servocc byte %8.0g =1 if in service occupation
lwage float %9.0g log(wage)
expersq int %9.0g exper^2
tenursq int %9.0g tenure^2

Sorted by:

The command descr without arguments offers a description of the current contents of memory.

In the first column you have the name of the variable that can be changed by the command rename.

In the second and third columns there are the type and the display format that can be changed by the command

format. Stata has the following formats.

 For real numbers:
Type Bytes

float 4
double 8

Floats (the default) have about 7 digits of accuracy; the magnitude of the number does not matter. Thus, 1234567 can be

stored perfectly as a float, as can 1234567e+20. The number 123456789, however, would be rounded to 123456792. In

general, this rounding does not matter.

If you are storing identification numbers, however, the rounding could matter. In this case, use doubles which have 16

digits of accuracy.

Stata stores numbers in binary and this has a second effect on numbers less than 1. 1/10 has no perfect binary

representation just as 1/11 has no perfect decimal representation. In float, .1 is stored as .10000000149011612. Note

that there are 7 digits of accuracy, just as with numbers larger than 1.

Stata, however, performs all calculations in double precision. If you were to store 0.1 in a float called x and then ask

list if x==.1 (the command is explained below), there would be nothing in the list. The .1 that you just typed

was converted to double, with 16 digits of accuracy (.100000000000000014...) and that number is never equal to 0.1

stored with float accuracy.

12

One solution is to type (explained below) list if x==float(.1). The float() function rounds its argument to

float accuracy.

The other alternative would be store your data as double, but this is probably a waste of memory. Few people have data

that is accurate to 1 part in 10 to the 7th. Among the exceptions are banks, who keep records accurate to the penny on

amounts of billions of dollars. If you are dealing with such financial data, store your dollar amounts as doubles. See [U]

16.10 Precision and problems therein.

 For integers:
Type Bytes

byte 1
int 2
long 4

Long is the most accurate, with 9 digits.

 For non-numbers:
Type Bytes length

str1 1 1
str2 2 2
...
str244 244 244

In order to economise on the disk space and memory required to store variables the command is compress.

In the forth colum there are value labels that associate numeric values with character strings. They exist separately from
variables and will be displayed in printed output instead of the numeric values. Thus, they are useful for improving the
comprehension of a variable that we desire to maintain in a numeric format.

label define femalelb 0 male 1 female
label values female femalelb
label list

femalelb:
 0 male
 1 female

descr

Contains data from D:\LAVORI\books\basic\WAGE1.DTA
 obs: 526
 vars: 24 16 Sep 1996 15:52
 size: 18,936 (99.8% of memory free)

 storage display value
variable name type format label variable label

wage float %8.2g average hourly earnings
educ byte %8.0g years of education
exper byte %8.0g years potential experience
tenure byte %8.0g years with current employer
nonwhite byte %8.0g =1 if nonwhite
female byte %8.0g femalelb =1 if female
married byte %8.0g =1 if married
numdep byte %8.0g number of dependents
smsa byte %8.0g =1 if live in SMSA
northcen byte %8.0g =1 if live in north central U.S
south byte %8.0g =1 if live in southern region
west byte %8.0g =1 if live in western region
construc byte %8.0g =1 if work in construc. indus.
ndurman byte %8.0g =1 if in nondur. manuf. indus.
trcommpu byte %8.0g =1 if in trans, commun, pub ut

13

trade byte %8.0g =1 if in wholesale or retail
services byte %8.0g =1 if in services indus.
profserv byte %8.0g =1 if in prof. serv. indus.
profocc byte %8.0g =1 if in profess. occupation
clerocc byte %8.0g =1 if in clerical occupation
servocc byte %8.0g =1 if in service occupation
lwage float %9.0g log(wage)
expersq int %9.0g exper^2
tenursq int %9.0g tenure^2

Sorted by:

Label values may be saved in the data-set:

save wage1, replace

In the fifth column we have variable labels, which are character strings (maximun 80 characters) describing the

variable. For example, the label of female has been created by the command (the same command is to be used to change

it):

label var female “=1 if female”

5.2. Command syntax: the varlist
In varlist you put a list of one or more variables on which the command is to operate. The order of the variables is

important in the following cases.

 In the regression commands the first variable is the dependent one, and the following variables are the explanatory

ones.

 You may use interval between first and last variables:

. descr services- clerocc

 storage display value
variable name type format label variable label

services byte %8.0g =1 if in services indus.
profserv byte %8.0g =1 if in prof. serv. indus.
profocc byte %8.0g =1 if in profess. occupation
clerocc byte %8.0g =1 if in clerical occupation

 You may use “wildcards” to refer to all variables with a certain prefix:

. descr prof*

 storage display value
variable name type format label variable label

profserv byte %8.0g =1 if in prof. serv. indus.
profocc byte %8.0g =1 if in profess. occupation

. descr ????occ

 storage display value
variable name type format label variable label

profocc byte %8.0g =1 if in profess. occupation
clerocc byte %8.0g =1 if in clerical occupation
servocc byte %8.0g =1 if in service occupation

5.3. Command syntax: exp clause
The exp clause is used in command such as generate and replace.

For example, the variable lwage has been created by the command:

g lwage=log(wage)

14

where the log(.) belongs to the mathematical funcion of Stata:

+--+
| Type of function | See help |
|---+------------------|
Mathematical functions	mathfun
Probability distributions & density functions	probfun
Random numbers	random
String functions	strfun
Programming functions	progfun
Date functions	datefun
Time-series functions	tsfun
Matrix functions	matrix functions
+--+

Arithmetic operators are:
+ addition
- subtraction
* multiplication
/ division
^ power

Additionally, Stata has more functions available if you use the command egen (extended generate).

Any variable could be eliminated by the command:
drop lwage

5.4. Command syntax: if and in clauses
Unless you do not impose conditions, Stata commands will automatically apply to all observations currently defined.

In order to apply a command only to observations respecting some conditions you may proced as follows.
. list female if wage>20

 +--------+
 | female |
 |--------|
 15. | male |
 59. | female |
112. | male |
186. | male |
229. | male |
 +--------+

. list female if wage>20, noobs

 +--------+
female
male
female
male
male
male
 +--------+

where, as an example, the noobs option suppresses the listing of the observation numbers.

Relational operators (numeric and string) are:
> greater than
< less than
>= > or equal
<= < or equal
== equal
~= not equal
!= not equal

Note that:

15

 for string variables you need to put the value between “ ”;

 missing values appear as the dot (.) for numeric variables and as the null string (“”) for string variables; missing

values take on the largest possible positive value, so in the presence of missing data you do not want to say
. list female if wage>20, noobs

but rather
. list female if wage>20&wage!=., noobs

Logical operators are:
~ not
! not
| or
& and

in at the end of a command means the command is to use only the observations specified:
. list wage in 10

 +------+
 | wage |
 |------|
 10. | 18 |
 +------+

. list wage in 1/10

 +------+
 | wage |
 |------|
 1. | 3.1 |
 2. | 3.2 |
 3. | 3 |
 4. | 6 |
5.3
 6. | 8.8 |
 7. | 11 |
 8. | 5 |
 9. | 3.6 |
 10. | 18 |
 +------+

Negative numbers may be used to specify distance from the end of the data; lowercase el indicates the last observation,

as –1 (compare output of list wage in -10/l with output of list wage in -10/-1).

. list wage in -10/l

 +------+
 | wage |
 |------|
517. | 3.1 |
518. | 9.3 |
519. | 7.5 |
520. | 4.8 |
5.7
522. | 15 |
523. | 2.3 |
524. | 4.7 |
525. | 12 |
526. | 3.5 |
 +------+

5.5. Command syntax: bysort and sort
Compare previous list output with the following:
. sort wage

16

. list wage in 10

 +------+
 | wage |
 |------|
 10. | 2 |
 +------+

. list wage in 1/10

 +------+
 | wage |
 |------|
 1. | .53 |
 2. | 1.4 |
 3. | 1.5 |
 4. | 1.5 |
1.6
 6. | 1.7 |
 7. | 1.8 |
 8. | 2 |
 9. | 2 |
 10. | 2 |
 +------+

. list wage in -10/l

 +------+
 | wage |
 |------|
517. | 18 |
518. | 18 |
519. | 19 |
520. | 20 |
20
522. | 22 |
523. | 22 |
524. | 22 |
525. | 23 |
526. | 25 |
 +------+

The sort command arranges wage in ascending-order; thus, the in clause list the ten lowest wages or the ten highest

wages. To obtain descending-or-ascending-order see the command gsort.

Many Stata commands may be prefixed with a bylist, and thus performed repeatedly for each element of the

(categorical) variables in that list.

. bysort female: summ wage

--
> female = 0

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 wage | 274 7.099489 4.160858 1.5 24.98

--
> female = 1

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 wage | 252 4.587659 2.529363 .53 21.63

Previous command provides descriptive statistics for both female and male wages. The bysort prefix instead of the

by prefix is useful when the data are not already sorted by the bylist variables and we do not want to sort in that way. In

17

what follows you have another example of an option for a specific command: detail (abbreviated with d). The

specific output will be explained in lecture 2.

. bysort female: summ wage, d

--
> female = 0

 average hourly earnings

 Percentiles Smallest
 1% 1.75 1.5
 5% 2.92 1.67
10% 3 1.75 Obs 274
25% 4.11 2 Sum of Wgt. 274

50% 6 Mean 7.099489
 Largest Std. Dev. 4.160858
75% 8.77 21.86
90% 12.5 22.2 Variance 17.31274
95% 15.38 22.86 Skewness 1.575794
99% 22.2 24.98 Kurtosis 5.828708

--
> female = 1

 average hourly earnings

 Percentiles Smallest
 1% 1.5 .53
 5% 2.3 1.43
10% 2.9 1.5 Obs 252
25% 3 1.63 Sum of Wgt. 252

50% 3.75 Mean 4.587659
 Largest Std. Dev. 2.529363
75% 5.54 14.58
90% 7.5 15 Variance 6.397678
95% 9 18 Skewness 2.818724
99% 15 21.63 Kurtosis 15.02116

The by prefix should not be confused with the by option available on some commands. For example:

. ttest wage, by(female)

Two-sample t test with equal variances

--
 Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--
 0 | 274 7.099489 .2513666 4.160858 6.604626 7.594352
 1 | 252 4.587659 .1593349 2.529363 4.273855 4.901462
---------+--
combined | 526 5.896103 .1610262 3.693086 5.579768 6.212437
---------+--
 diff | 2.51183 .3034092 1.915782 3.107878
--
Degrees of freedom: 524

 Ho: mean(0) - mean(1) = diff = 0

 Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
 t = 8.2787 t = 8.2787 t = 8.2787
 P < t = 1.0000 P > |t| = 0.0000 P > t = 0.0000

Previous command performs a two-sample t test of the hypothesis that wage has the same mean within the two groups,

male and female. Below, another example of an option for a specific command:

. ttest wage, by(female) unequal

Two-sample t test with unequal variances

18

--
 Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--
 0 | 274 7.099489 .2513666 4.160858 6.604626 7.594352
 1 | 252 4.587659 .1593349 2.529363 4.273855 4.901462
---------+--
combined | 526 5.896103 .1610262 3.693086 5.579768 6.212437
---------+--
 diff | 2.51183 .2976118 1.926971 3.09669
--
Satterthwaite's degrees of freedom: 456.327

 Ho: mean(0) - mean(1) = diff = 0

 Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
 t = 8.4400 t = 8.4400 t = 8.4400
 P < t = 1.0000 P > |t| = 0.0000 P > t = 0.0000

The by prefix also modifies the meanings of the observation number symbol. usually _n refers to the current

observation number, which varies from 1 to _N, the maximum defined observation. Under a bylist, _n refers to the

observation within the bylist, and _N to the total number of observations for that category.

. bysort female married nonwhite: g obs=_n

. list female married nonwhite obs

 +-----------------------------------+
 | female married nonwhite obs |
 |-----------------------------------|
 1. | 0 0 0 1 |
……
 77. | 0 0 0 77 |
 78. | 0 0 1 1 |
……
 86. | 0 0 1 9 |
 87. | 0 1 0 1 |
……
100. | 0 1 0 14 |
………

5.6. Command syntax: the using clause
In many empirical research projects, the data to be utilised may be stored in a number of separate files. Stata only

permits a single data-set to be accessed at one time; however, commands like merge, append, joinby are

available.

Suppose you have the two following data-sets:

Contains data from occ_1987_1.dta
 obs: 21
 vars: 2 19 Jul 2005 16:18
 size: 273 (99.9% of memory free)

 storage display value
variable name type format label variable label

settori str5 %9s from original data
dsett float %40.0g dsettlb group(settori)

Sorted by: dsett

Contains data from occ_1987_2.dta
 obs: 21
 vars: 2 19 Jul 2005 16:20
 size: 252 (99.9% of memory free)

 storage display value
variable name type format label variable label

ult87 float %9.0g labour units, annual averages
 in thousands
dsett float %40.0g dsettlb group(settori)

19

Sorted by: dsett

The merge command combines two Stata-format data-sets that posses variables in common, adding other variables to

the existing ones. It works on a master data-set, currenlty in memory, and a using data-set, both sorted on one or more

merge variables (in the example, dsett):5

. use occ_1987_1, clear

. merge dsett using occ_1987_2
(label dsettlb already defined)
. descr
Contains data from occ_1987_1.dta
 obs: 21
 vars: 4 19 Jul 2005 16:18
 size: 378 (99.9% of memory free)

 storage display value
variable name type format label variable label

settori str5 %9s from original data
dsett float %40.0g dsettlb group(settori)
ult87 float %9.0g labour units, annual averages
 in thousands
_merge byte %8.0g

Sorted by:
 Note: dataset has changed since last saved

. tab _m
 _merge | Freq. Percent Cum.
------------+-----------------------------------
 3 | 21 100.00 100.00
------------+-----------------------------------
 Total | 21 100.00

In previous case we did a one-to-one merge, in which each record in the using data-set is combined with one record in

the master data-set. This is appropriate when you acquired additional variables for the same observations. A new

variable, _merge, is created. You can check it by using the tabulate command: if _merge takes the integer value

3 only, this indicates that all the observations appear in both the master and the using data-sets. When _merge=1, one

or more observations appear in the master only (occ1987); when _merge=2, one or more observations appear in the

using only (occ1988). You can remove those observations which remain unmatched with the command: drop if

_m!=3.

The distinction between master and using data-set is important. When the same variable is present in each of the files,

by default Stata holds the master data inviolate and discard the using data-set copy of that variable. This may be

modified by the update option: the values from the using data are retained when the master data contains missing; the

codes for _merge are:
_merge==1 obs. from master data
_merge==2 obs. from using data
_merge==3 obs. from both, master agrees with using
_merge==4 obs. from both, missing in master updated
_merge==5 obs. from both, master disagrees with using

The update replace option specifies that even when the master data contain nonmissing values, they are to be

replaced with corresponding values from the using data when corresponding values are not equal. A nonmissing value,

however, will never be replaced with a missing value.

5 If one of the data-zet is not sorted, the command is: . merge dsett using occ_1987_2, sort.

20

Now look at the two following data-sets:
. use occ_1987, clear
. descr
Contains data from occ_1987.dta
 obs: 21
 vars: 4 19 Jul 2005 10:35
 size: 441 (99.9% of memory free)

 storage display value
variable name type format label variable label

settori str5 %9s
ult float %9.0g labour units, annual averages
 in thousands
dsett float %40.0g dsettlb group(settori)
year float %9.0g

Sorted by: dsett
 Note: dataset has changed since last saved

. tab year
 year | Freq. Percent Cum.
------------+-----------------------------------
 1987 | 21 100.00 100.00
------------+-----------------------------------
 Total | 21 100.00

. use occ_1988, clear

. descr
Contains data from occ_1988.dta
 obs: 21
 vars: 4 19 Jul 2005 10:34
 size: 441 (99.9% of memory free)

 storage display value
variable name type format label variable label

settori str5 %9s
ult float %9.0g labour units, annual averages
 in thousands
dsett float %40.0g dsettlb group(settori)
year float %9.0g

Sorted by: dsett
 Note: dataset has changed since last saved

. tab year
 year | Freq. Percent Cum.
------------+-----------------------------------
 1988 | 21 100.00 100.00
------------+-----------------------------------
 Total | 21 100.00

The append command stacks the two data-set, thus adding observations of the using data-set to the master data-set.

This is useful when you need to create timeseries data extracted from different databases.

. use occ_1987, clear

. append using occ_1988
(label dsettlb already defined)
. descr
Contains data from occ_1987.dta
 obs: 42
 vars: 4 19 Jul 2005 16:25
 size: 882 (99.9% of memory free)

 storage display value
variable name type format label variable label

settori str5 %9s
ult float %9.0g labour units, annual averages
 in thousands
dsett float %40.0g dsettlb group(settori)
year float %9.0g

Sorted by:
 Note: dataset has changed since last saved

21

. tab year

 year | Freq. Percent Cum.
------------+-----------------------------------
 1987 | 21 50.00 50.00
 1988 | 21 50.00 100.00
------------+-----------------------------------
 Total | 42 100.00

. save occ_1987_1988

file occ_1987_1988.dta saved

6. Loading external data and creating a file.dta

6.1. Use of the editor for file.xls
Suppose your data (a balanced panel data-set) are in excel, as in the case of the file “occupati_Italia.xls”. An important
check is to verify that a dot is used to separate integers from decimals.

From the file “occupati_Italia.xls”, sheet “dati”, select all the columns from “Dates” to “ultsndv2” and all the rows from
“Dates” to “97”. From the menu select copy. Go to Stata, click on the Data Editor, from the menu select paste. You
obtain:

. edit
(23 vars, 18 obs pasted into editor)
. descr
Contains data
 obs: 18
 vars: 23
 size: 1,620 (99.9% of memory free)

 storage display value
variable name type format label variable label

dates byte %8.0g Dates
ultag float %9.0g
ulten float %9.0g
ultma1 float %9.0g
ultma2 float %9.0g
ultma3 float %9.0g
ultma4x7 float %9.0g
ultma8 float %9.0g
ultma9 float %9.0g
ultma10 float %9.0g
ultma11 float %9.0g
ultma12 float %9.0g
ultma13 float %9.0g
ultma14 float %9.0g
ultcos float %9.0g
ultco1 float %9.0g
ultco2 float %9.0g
ulttr float %9.0g
ultcre float %9.0g
ultloc byte %8.0g
ultvar float %9.0g
ultsndv1 float %9.0g
ultsndv2 float %9.0g

Sorted by:
 Note: dataset has changed since last saved

This data format is called wide:

i Xi,j
Dates ultag ulten ultsndv2

80 2993.8 189.6 452.6

22

where i indicates the variable identifying a record (in our case, a year, 80); j indicates the variable whose unic values
identify a sub-observation (in our case, the different industries, ag, en, …, sndv2); finally, Xi,j indicates the variables
that may be transformed on the basis of i and j.
This data orientation is the one required by Stata in order to estimate seemingly unrelated regressions (sureg), in
which the data must have T observations, with separate variables for each cross-sectional unit.
On the contrary, panel estimation (xtreg) requires that the data are stacked, i.e. in modality long. With this format is
also easier to generate data transformations, where a single variable is involved:

i Xi,j
Dates settori ult

80 ag 2993.8
80 en 189.6
.. ..
.. ..
80 sndv2 452.6

The data transformation from wide to long and vice versa is obtained by the command reshape, a very powerful
(and complicated because of the many variations) tool:

. reshape long ult, i(dates) j(settori) string
(note: j = ag co1 co2 cos cre en loc ma1 ma10 ma11 ma12 ma13 ma14 ma2 ma3 ma4x7 ma8 ma9 sndv1 sndv2
tr var)

Data wide -> long

Number of obs. 18 -> 396
Number of variables 23 -> 3
j variable (22 values) -> settori
xij variables:
 ultag ultco1 ... ultvar -> ult

. descr

Contains data
 obs: 396
 vars: 3
 size: 5,544 (99.9% of memory free)

 storage display value
variable name type format label variable label

dates byte %8.0g Dates
settori str5 %9s
ult float %9.0g

Sorted by: dates settori
 Note: dataset has changed since last saved

In simplier cases, to create a vector may be enough the command stack.

In what follow we show some examples of data manipulation in order to improve their readibility:

. rename dates year

. replace year=year+1900
year was byte now int
(396 real changes made)
. tab year

 Dates | Freq. Percent Cum.
------------+-----------------------------------
 1980 | 22 5.56 5.56
 1981 | 22 5.56 11.11
 1982 | 22 5.56 16.67
 1983 | 22 5.56 22.22
 1984 | 22 5.56 27.78
 1985 | 22 5.56 33.33
 1986 | 22 5.56 38.89
 1987 | 22 5.56 44.44
 1988 | 22 5.56 50.00
 1989 | 22 5.56 55.56

23

 1990 | 22 5.56 61.11
 1991 | 22 5.56 66.67
 1992 | 22 5.56 72.22
 1993 | 22 5.56 77.78
 1994 | 22 5.56 83.33
 1995 | 22 5.56 88.89
 1996 | 22 5.56 94.44
 1997 | 22 5.56 100.00
------------+-----------------------------------
 Total | 396 100.00

. egen dsett=group(settori)

. list dsett settori in 1/22

 +-----------------+
 | dsett settori |
 |-----------------|
 1. | 1 ag |
 2. | 2 co1 |
 3. | 3 co2 |
 4. | 4 cos |
5 cre
 6. | 6 en |
 7. | 7 loc |
 8. | 8 ma1 |
 9. | 9 ma10 |
10 ma11
 11. | 11 ma12 |
 12. | 12 ma13 |
 13. | 13 ma14 |
 14. | 14 ma2 |
15 ma3
 16. | 16 ma4x7 |
 17. | 17 ma8 |
 18. | 18 ma9 |
 19. | 19 sndv1 |
20 sndv2
 21. | 21 tr |
 22. | 22 var |
 +-----------------+

. do dsett_label

. label define dsettlb 1 `"agricoltura"', modify

. label define dsettlb 2 `"commercio"', modify

. label define dsettlb 3 `"alberghi"', modify

. label define dsettlb 4 `"costruzioni"', modify

. label define dsettlb 5 `"credito"', modify

. label define dsettlb 6 `"prodotti energetici"', modify

. label define dsettlb 7 `"locazione fabbricati"', modify

. label define dsettlb 8 `"minerali/metalli ferrosi e non ferrosi"', modify

. label define dsettlb 9 `"tessile/abbigl/cuoio"', modify

. label define dsettlb 10 `"legno"', modify

. label define dsettlb 11 `"carta/stampa"', modify

. label define dsettlb 12 `"gomma/plastica"', modify

. label define dsettlb 13 `"altri prodotti industriali"', modify

. label define dsettlb 14 `"min/prodotti da min mon metalliferi"', modify

. label define dsettlb 15 `"chimica/pharma"', modify

. label define dsettlb 16 `"prodotti metallo"', modify

. label define dsettlb 17 `"mezzi di trasporto"', modify

. label define dsettlb 18 `"alimentari/tabacco"', modify

. label define dsettlb 19 `"amm.ni pubbliche"', modify

. label define dsettlb 20 `"servizi domestici/istit. sociali private"', modify

. label define dsettlb 21 `"trasporti/comunicazioni"', modify

. label define dsettlb 22 `"servizi forniti alle imprese"', modify

. label values dsett dsettlb

end of do-file

The dsett_label.do is a program we prepared in order to improve data readibility (dsett is a variable better than settori to
indicate individuals of our panel). The program-file was written by looking at the list above and at the “legenda” sheet
in the file “occupati_Italia.xls”.

24

. tab dsett

 group(settori) | Freq. Percent Cum.
--+-----------------------------------
 agricoltura | 18 4.55 4.55
 commercio | 18 4.55 9.09
 alberghi | 18 4.55 13.64
 costruzioni | 18 4.55 18.18
 credito | 18 4.55 22.73
 prodotti energetici | 18 4.55 27.27
 locazione fabbricati | 18 4.55 31.82
 minerali/metalli ferrosi e non ferrosi | 18 4.55 36.36
 tessile/abbigl/cuoio | 18 4.55 40.91
 legno | 18 4.55 45.45
 carta/stampa | 18 4.55 50.00
 gomma/plastica | 18 4.55 54.55
 altri prodotti industriali | 18 4.55 59.09
 min/prodotti da min mon metalliferi | 18 4.55 63.64
 chimica/pharma | 18 4.55 68.18
 prodotti metallo | 18 4.55 72.73
 mezzi di trasporto | 18 4.55 77.27
 alimentari/tabacco | 18 4.55 81.82
 amm.ni pubbliche | 18 4.55 86.36
servizi domestici/istit. sociali privat | 18 4.55 90.91
 trasporti/comunicazioni | 18 4.55 95.45
 servizi forniti alle imprese | 18 4.55 100.00
--+-----------------------------------
 Total | 396 100.00

. tab settori

 settori | Freq. Percent Cum.
------------+-----------------------------------
 ag | 18 4.55 4.55
 co1 | 18 4.55 9.09
 co2 | 18 4.55 13.64
 cos | 18 4.55 18.18
 cre | 18 4.55 22.73
 en | 18 4.55 27.27
 loc | 18 4.55 31.82
 ma1 | 18 4.55 36.36
 ma10 | 18 4.55 40.91
 ma11 | 18 4.55 45.45
 ma12 | 18 4.55 50.00
 ma13 | 18 4.55 54.55
 ma14 | 18 4.55 59.09
 ma2 | 18 4.55 63.64
 ma3 | 18 4.55 68.18
 ma4x7 | 18 4.55 72.73
 ma8 | 18 4.55 77.27
 ma9 | 18 4.55 81.82
 sndv1 | 18 4.55 86.36
 sndv2 | 18 4.55 90.91
 tr | 18 4.55 95.45
 var | 18 4.55 100.00
------------+-----------------------------------
 Total | 396 100.00

. descr

Contains data
 obs: 396
 vars: 4
 size: 7,524 (99.9% of memory free)

 storage display value
variable name type format label variable label

year int %8.0g Dates
settori str5 %9s
ult float %9.0g
dsett float %40.0g dsettlb group(settori)

Sorted by:
 Note: dataset has changed since last saved

Try to type label list dsettlb.

25

6.2. Insheet command for file.prn, file.raw, file.csv (comma-separated)
The following command can be used for comma-separated or tab-delimited data files. Suppose, for example, the file
auto.prn, in which you have an identifier for the company, a year, a company’s name, sales and model of car:

1,1994,Fiat,350,500
2,1994,Ford,400,3000
3,1994,Chev. Monza, ,1500

You also may have a file as the following:

1 1994 Fiat 350 500
2 1994 Ford 400 3000
3 1994 Chev. Monza 1500

It is important that you verify the content of the file with the command:

. type auto.prn, showtabs
1,1994,Fiat,350,500
2,1994,Ford,400,3000
3,1994,Chev. Monza, ,1500

Even if you a have a blank in the name “Chev. Monza” and a missing for the sales of company 3, you will not
encounter any problem:

. insheet codice anno nome fatt modello using auto.prn
(5 vars, 3 obs)

. descr

Contains data
 obs: 3
 vars: 5
 size: 69 (99.9% of memory free)

 storage display value
variable name type format label variable label

codice byte %8.0g
anno int %8.0g
nome str11 %11s
fatt str3 %9s
modello int %8.0g

Sorted by:
 Note: dataset has changed since last saved

. list

 +--+
 | codice anno nome fatt modello |
 |--|
 1. | 1 1994 Fiat 350 500 |
 2. | 2 1994 Ford 400 3000 |
 3. | 3 1994 Chev. Monza 1500 |
 +--+

Note that insheet cannot read space-delimited data or character strings with embedded spaces.

6.3. Infile command for file.asc, file.raw (ASCII format)
Suppose your data, contained in the file auto.raw, are in a free format, space-delimited:

. type auto.raw, showtabs
1 1994 "Fiat" 350 500
2 1994 "Ford" 400 3000
3 1994 "Chev. Monza" . 1500

You must use the following command:
. infile codice anno str10 nome fatt modello using auto.raw
(3 observations read)

26

. list

 +---+
 | codice anno nome fatt modello |
 |---|
 1. | 1 1994 Fiat 350 500 |
 2. | 2 1994 Ford 400 3000 |
 3. | 3 1994 Chev. Monz . 1500 |
 +---+

where the string variables without embedded spaces must be specified in the command. Note that single quotes can be
used instead of double quotes. Single or double quotes delimiting strings can be omitted if the string contains no blanks
or other special characters.

Now suppose the most complicated case, with fixed-format data including data containing undelimited string variables.

. type auto_c.raw, showtabs
11994Fiat350500
21994Ford4003000
31994Chev. Monza 1500

In order to read these kind of data fields, not delimited, you must create a dictionary file which describes the format of
each variable and defines the variable’ location. Moreover, you can separately read those records for which certain
conditions are satisfied (the different formats are being properly specified on for different subsets of the file).

. infile using auto_c1.dct in 1/2

dictionary using auto_c.raw {

 long codice %1f "Codice impresa"
 float anno %4f "Anno di bilancio"
_column(6)
 str4 nome %4s "nome societa'"
_column(10)
 float fatt %3f "fatturato"
 float modello %4f "modello"
}

(2 observations read)

. list

 +---------------------------------------+
 | codice anno nome fatt modello |
 |---------------------------------------|
 1. | 1 1994 Fiat 350 500 |
 2. | 2 1994 Ford 400 3000 |
 +---------------------------------------+

. save pippo
file pippo.dta saved

. infile using auto_c2.dct in 3

dictionary using auto_c.raw {

 long codice %1f "Codice impresa"
 float anno %4f "Anno di bilancio"
_column(6)
 str11 nome %11s "nome societa'"
_column(17)
 float fatt %1f "fatturato"
_column(18)
 float modello %4f "modello"
}
(1 observations read)

. list

 +--+
 | codice anno nome fatt modello |
 |--|
 1. | 3 1994 Chev. Monza . 1500 |
 +--+

27

. append using pippo

. list

 +--+
 | codice anno nome fatt modello |
 |--|
 1. | 3 1994 Chev. Monza . 1500 |
 2. | 1 1994 Fiat 350 500 |
 3. | 2 1994 Ford 400 3000 |
 +--+

. sort cod

. list

 +--+
 | codice anno nome fatt modello |
 |--|
 1. | 1 1994 Fiat 350 500 |
 2. | 2 1994 Ford 400 3000 |
 3. | 3 1994 Chev. Monza . 1500 |
 +--+
.
Some important options for the dictionary are:
_column() says where the data begin for each variable. When you also write how many columns the data span (the
%1f, %4s, etc.), some of this information may be redundant: after reading “anno”, Stata has finished with 5 columns
read, and, unless instructed otherwise, it would proceed to the next column, column 6, to begin reading information
about “nome”.
You may also specify that more than one record in the input file corresponds to a single observation in the data-set.
Notice that:
_line() goes to the specified line of the observation
_lines() says how many lines each observation takes.

For example:
. type auto_cc.raw, showtabs
11994
Fiat
350
500
21994
Ford
400
3000
31994
Chev. Monza

1500

. infile using auto_cc.dct

dictionary using auto_cc.raw {

_lines(4)
_line(1)
 long codice %1f "Codice impresa"
 float anno %4f "Anno di bilancio"
_line(2)
 str11 nome %11s "nome societa'"
_line(3)
 float fatt %3f "fatturato"
_line(4)
 float modello %4f "modello"
}

(3 observations read)

. list
 +--+
 | codice anno nome fatt modello |
 |--|
 1. | 1 1994 Fiat 350 500 |
 2. | 2 1994 Ford 400 3000 |
 3. | 3 1994 Chev. Monza . 1500 |
 +--+

28

Also see the command infix, an alternative to infile with a dictionary, and that has a syntax similar to that used by
SAS.

6.4. The Stat/Transfer software
Stat/Transfer is a very useful tool when you need to read data already in the format of SAS, SPSS, Excel, GAUSS,

MATLAB, DBF and many other packages. It converts file formats into Stata format, without loss of variable labels,

value labels, and the like. See the stata.com web site.

7. Working with panel and time-series: basics
Stata has the d., l. , f. operators that may be used in time-series and panel data to specify first differences, lags,

and leads, respectively. These operators understand missing data and numlists: l(1/4).x stands for xt-1, xt-2, xt-3, xt-4.

Before using these operators, it is important to declare the data to be a panel or a time series and to designate that

timevar represents time. For panel:

tsset indvar timevar

The observation indicator and the timeseries indicator may also be defined separately:

iis indvar

tis timevar

If you have a panel, or longitudinal data, you can obtain pure cross-section or pure time-series in different ways.

For example, if you need to summarise a variable to each time-period T, you can use:
. use occ_1987_1988, clear

. tsset dsett year
 panel variable: dsett, 1 to 21
 time variable: year, 1987 to 1988

. bysort year: summ ult
--
-> year = 1987

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 ult | 21 969.9857 1136.864 0 3972.2

--
-> year = 1988

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 ult | 21 985.3095 1155.506 0 3993.6

If you need to create average values for each time period averaged over individuals N inside your panel data-set, you

can use:
. egen ultm=mean(ult), by(year)
. bysort year: summ ultm

--
-> year = 1987

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 ultm | 21 969.9857 0 969.9857 969.9857

--
-> year = 1988

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 ultm | 21 985.3095 0 985.3095 985.3095

29

If you need to create average values for each time period averaged over individuals N and, at the same time, to obtain a

new datas-set, you can use:
. collapse (mean) ult, by(year)
. list

 +-----------------+
 | year ult |
 |-----------------|
 1. | 1987 969.9857 |
 2. | 1988 985.3095 |
 +-----------------+

Dealing with time series requires the following steps.

 A timevar is created by using the functions for creating dates from year and week, year and quarter, etc:
yw(year_exp, week_exp)

ym(year_exp, month_exp)

yq(year_exp, quarter_exp)

yh(year_exp, halfyear_exp)

mdy(month_exp, day_exp, year_exp)

see help on tsfun and, in particular, on ywfcns and mdyfcn.

 How timevar will be displayed is selected by using the format(%fmt), daily, weekly, monthly,

quarterly, halfyearly, yearly, and generic. Stata understands the following time scales %t:
Format Description Coding
--
%td daily (same as %d) 0 = 01jan1960, 1 = 02jan1960
%tw weekly 0 = 1960w1, 1 = 1960w2
%tm monthly 0 = 1960m1, 1 = 1960m2
%tq quarterly 0 = 1960q1, 1 = 1960q2
%th halfyearly 0 = 1960h1, 1 = 1960h2
%ty yearly 1960 = 1960, 1961 = 1961
%tg generic 0 = ?
--
Note: times before 1960 are allowed. For instance, -1 means 31dec1959 in %td format and
1959q4 in %tq format.

As a first example, suppose that your data are quarterly, starting in 1959q1; thus, the first observation has timevar = -4.

We call the timevar “time”.
. use USquarter, clear
. list anno trimestre

 +-----------------+
 | anno trimes~e |
 |-----------------|
 1. | 1959 1 |
 2. | 1959 2 |
 3. | 1959 3 |
 4. | 1959 4 |
1960 1
……
. g time=yq(anno, trimestre)
. list anno trimestre time

 +------------------------+
 | anno trimes~e time |
 |------------------------|
 1. | 1959 1 -4 |
 2. | 1959 2 -3 |
 3. | 1959 3 -2 |
 4. | 1959 4 -1 |
1960 1 0
……

30

You could tsset and simultaneously format your data.

. tsset time, quarterly
 time variable: time, 1959q1 to 2000q4

. list anno trimestre time

 +--------------------------+
 | anno trimes~e time |
 |--------------------------|
 1. | 1959 1 1959q1 |
 2. | 1959 2 1959q2 |
 3. | 1959 3 1959q3 |
 4. | 1959 4 1959q4 |
1960 1 1960q1
…..

You may obtain the same result by tsset time, format(%tq). See help tdates and tfmt for more

information on the %t format (use whichever appeals to you) and the advantages of setting it.

The format makes the tin() and twithin() selection functions work so that later, after tsseting the data, you can

type things like:

regress ... if tin(1959q1, 1959q4)

to run a regression on the subsample {1959q1 ≤ timevar ≤ 1959q4}, or

regress ... if twithin(1959q1, 1959q4)

to run a regression on the subsample {1959q1 < timevar < 1959q4}.

As another example:
. use NYTdailysales, clear
. g time=mdy(month, day, year)
. list year month day time

 +----------------------------+
 | year month day time |
 |----------------------------|
 1. | 2000 7 3 14794 |
 2. | 2000 7 4 14795 |
 3. | 2000 7 5 14796 |
 4. | 2000 7 6 14797 |
2000 7 7 14798
…..

. tsset time, daily
 time variable: time, 03jul2000 to 31oct2001, but with gaps
. list year month day time

 +--------------------------------+
 | year month day time |
 |--------------------------------|
 1. | 2000 7 3 03jul2000 |
 2. | 2000 7 4 04jul2000 |
 3. | 2000 7 5 05jul2000 |
 4. | 2000 7 6 06jul2000 |
2000 7 7 07jul2000
…….

. tsset time, format(%tdD/N/Y)
 time variable: time, 03/07/00 to 31/10/01, but with gaps
. list year month day time

 +-------------------------------+
 | year month day time |
 |-------------------------------|
 1. | 2000 7 3 03/07/00 |
 2. | 2000 7 4 04/07/00 |
 3. | 2000 7 5 05/07/00 |
 4. | 2000 7 6 06/07/00 |
2000 7 7 07/07/00

31

……

In this example Stata is warning you that the timeseries are not complete. See commands: tsfill, ipolate.

Alternatively, a trick may be:
. egen obs=group(day month year), label
. tsset obs
 time variable: obs, 1 to 175
. sort year month day
. list year month day obs

 +---------------------------------+
 | year month day obs |
 |---------------------------------|
 1. | 2000 7 3 3 7 2000 |
 2. | 2000 7 4 4 7 2000 |
 3. | 2000 7 5 5 7 2000 |
 4. | 2000 7 6 6 7 2000 |
2000 7 7 7 7 2000
……

8. Working with commands’ results and some preliminaries on programming
All Stata statistical commands leave results in the program’s data structures, so that customized output is readily

generated by extracting items from these data structures.

Commands are either “r-class” routines, which return results in the r() data structures, or ‘e-class” (estimation)

routines, which return results in the e() data structures. Each data structure may contain scalars, local macros,

matrices, and functions: for instance, r(mean) contains the mean of a series after application of r-class command

summarize, while e(b) is a matrix (row vector) of estimated coefficients returned by e-class command
regress.

Results are available until another r-class or e-class command is executed, and may be examined with commands

return list (for the r-class) and ereturn list (for the e-class). Also see [U] 18.9 Accessing results calculated

by estimation commands.

Another useful capability is provided by the postfile and post commands, which permits a separate Stata data-set

to be created in the course of a program; after the program is finished, this new data-set with statistics or fitted values or

estimated standard errors can be opened and analysed. In the post command the parenteses () surrounding each exp

are required; the new data-set can be named with tempname command and used by the postfile command as

`new-data-set_name'

In what follows you will find some examples of Stata programs.
. use WAGE1.dta, clear
. covaun wage
Coefficient of Variation = .62636053

Covaun.ado is a program that displays the coefficient of variation of a variable. It uses macros, i.e. named entities

that can contain both strings and numeric values, or numeric values only (at maximum precision). The definition of

macros is really much more confusing than the concept. Look, for example, at the program covaun.ado:
capture program drop covaun
program define covaun
 version 8.0
 quietly summarize `1'
 local v1 = r(sd)/r(mean) /* coefficient of variation */
 display "Coefficient of Variation = " `v1'
end

32

The macro 1, is used to indicate the first argument passed to a program: when you type covaun wage, the contents of

1, `1', is wage. Using the same logic, you can add macro 2, 3, etc. containing a second, third, etc. variable. The

second macro contained in the program is v1, defined as the scalar r(sd)/r(mean), i.e. by using post-results of the

summarize command.

In Stata you have the following macros:

 local macros, which exist and are accessible only within the procedure where they were created; after definition, to

use them, you must type `local_name';

 global macros, which exist and are accessible across all procedures; after definition, to use them, you must type

$global_name;

 scalar, that, differently from local and global macros, only can contain a single number (at maximum precision) but

not a string.

Now look at a different program, that displays the coefficient of variation of more than one variable:
. covamu wage educ
Coefficient of variation for wage = .62636053
Coefficient of variation for educ = .22041552

where the program content is:
capture program drop covamu
program define covamu
 version 8.0
 local i = 1
 while "``i''" ~= "" {
 quietly summarize ``i''
 local v1 = r(sd)/r(mean) /* coefficient of variation */
 display "Coefficient of variation for ``i'' = " `v1'
 local i = `i' + 1
 }
end

In this case, you see an example of local macro used as counters within a loop structure explicitly defined by the

while command. The new local macro i is used to index through the list of variables that were typed after the

program name. The first time through the loop the contents of i is `1', the second time it is `2' and so on. Note that

you need to use the compound double quotes (“`something'“) in order to make something becoming the content

of the macro, where something itself contains quotation marks.

The same can be done avoiding the numbered macros altogether and istead looping the variables in `varlist'

directly. In this way, the program is executed even more quickly.
. covamu1 wage educ

Coefficient of variation for wage = .62636053
Coefficient of variation for educ = .22041552

. covamu1 wage educ, title("all the sample")

all the sample:
Coefficient of variation for wage = .62636053
Coefficient of variation for educ = .22041552

. covamu1 wage educ if female==1, title("for females only")

for females only:
Coefficient of variation for wage = .55134073
Coefficient of variation for educ = .20074282

33

The program content is:
capture program drop covamu1
program define covamu1
 version 8.0
 syntax varlist [if] [in] [, title(string)]
 display
 if "`title'"!="" {
 display "`title':"
 }
 foreach var of local varlist {
 quietly summarize `var' `if' `in'
 local v1 = r(sd)/r(mean) /* coefficient of variation */
 display "Coefficient of variation for `var' = " `v1'

 }
end

where the command syntax examines what the user typed and attempts to match it to the syntax diagram: if it does

match, the individual components are stored in particular local macros (`var', `if', `in', `title') where

you can subsequently access them. Option in squared brackets indicate that they are optional (without squared brackets

they are required: if you do not type them, an error message is issued). The command foreach var of local

varlist repeatedly sets local macro `var' to each element of the list obtained from syntax and executes on it the

commands enclosed in braces.

Stata also contains a full-featured matrix language that allows any estimation results to be stored in matrices and

manipulated, thus supporting the programming of many estimators. In what follows we make a comparison between the

output of Stata regression commands (regress; vce; vce, corr) and the output obtained by a program

(reg_matrix.ado) that uses some matrix and post-estimation commands.

. use "D:\LAVORI\bookbogo\intro_to_stata\WAGE1.DTA", clear

. reg wage female educ

 Source | SS df MS Number of obs = 526
-------------+------------------------------ F(2, 523) = 91.32
 Model | 1853.25304 2 926.626518 Prob > F = 0.0000
 Residual | 5307.16125 523 10.1475359 R-squared = 0.2588
-------------+------------------------------ Adj R-squared = 0.2560
 Total | 7160.41429 525 13.6388844 Root MSE = 3.1855

--
 wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 female | -2.273362 .2790444 -8.15 0.000 -2.821547 -1.725176
 educ | .5064521 .0503906 10.05 0.000 .4074592 .605445
 _cons | .6228168 .6725334 0.93 0.355 -.698382 1.944016
--

. vce

 | female educ _cons
-------------+---------------------------
 female | .077866
 educ | .001196 .002539
 _cons | -.052325 -.032472 .452301

. vce, corr

 | female educ _cons
-------------+---------------------------
 female | 1.0000
 educ | 0.0850 1.0000
 _cons | -0.2788 -0.9582 1.0000

. reg_matrix wage female educ

34

--
 wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 female | -2.273362 .2790444 -8.15 0.000 -2.821547 -1.725176
 educ | .5064521 .0503906 10.05 0.000 .4074592 .605445
 _cons | .6228168 .6725334 0.93 0.355 -.698382 1.944016
--

Covariance of the regression coefficients

symmetric e(V)[3,3]
 female educ _cons
female .07786577
 educ .00119562 .00253922
 _cons -.05232474 -.03247231 .45230119

Correlation of the regression coefficients

symmetric C[3,3]
 female educ _cons
female 1
 educ .08502941 1
 _cons -.27881745 -.95818535 1

The reg_matrix.ado program content is the following:
capture program drop reg_matrix
program define reg_matrix, eclass

 version 8.0

 syntax varlist(min=2 numeric) [if] [in] [, Level(integer $S_level)]
 marksample touse /* mark cases in the sample */
 tokenize "`varlist'"

 quietly matrix accum sscp = `varlist' if `touse'
 local nobs = r(N)
 local df = `nobs' - (rowsof(sscp) - 1) /* df residual */

 matrix XX = sscp[2...,2...] /* X'X */
 matrix Xy = sscp[1,2...] /* X'y */

 matrix b = Xy * syminv(XX) /* (X'X)-1X'y */
 local k = colsof(b) /* number of coefs */
 matrix hat = Xy * b'
 matrix V = syminv(XX) * (sscp[1,1] - hat[1,1])/`df'
 matrix C = corr(V)
 matrix seb = vecdiag(V)
 matrix seb = seb[1, 1...]
 matrix t = J(1,`k',0)
 matrix p = t

 local i = 1
 while `i' <= `k' {
 matrix seb[1,`i'] = sqrt(seb[1,`i'])
 matrix t[1,`i'] = b[1,`i']/seb[1,`i']
 matrix p[1,`i'] = tprob(`df',t[1,`i'])
 local i = `i' + 1
 }

 ereturn post b V, dof(`df') obs(`nobs') depname(`1') /*
 */ esample(`touse')
 ereturn local depvar "`1'"
 ereturn local cmd "matreg"

 display
 ereturn display, level(`level')

 display
 display "Covariance of the regression coefficients"
 matrix list e(V)
 display
 display "Correlation of the regression coefficients"
 matrix list C

 matrix drop sscp XX Xy hat seb t p C
 ereturn clear
end

35

Use the help and the new mata manual to better understand……..

9. An overview of useful commands
help on line help on a specific command

search on line references on a keyword or topic

log logging to an external file

version shifting from one Stata release to another

generate create a new variable

replace modify an existing variable

sort change the sort order of the dataset

compress economise on space used by variables

append combine datasets by stacking

merge merge datasets

encode generate numeric variable from categorical variable

recode recode categorical variable

destring convert string variables to numeric

tab tabulate 1- and 2-ways tables

table tables of summary statistics

for repeat a Stata command over a varlist, numlist or anylist

while loop with a counter over a block of code

local define or modify a local macro, the name to be typed as `varname'

global define or modify a global macro, the name to be typed as $varname

scalar define or modify a scalar variable

use load a Stata data-set

save write the contents of memory to a Stata data-set

insheet load a text file in tab- or comma-delimited format

infile load a text file in space-delimited format or as defined in a dictionary

outfile write a text file in space- or comma-delimited format

outsheet write a text file in tab- or comma-delimited format

clear clear memory

drop drop certain variables and/or observations

keep keep only certain variables and/or observations

rename rename variables

collapse make a dataset of summary statistics

tsset define the time indicator for panel data

quietly do not show the results of a command

update query see if Stata is up to date

exit exit the program (, clear if dataset is not saved)

summarise descriptive statistics

correlate correlation matrices

corrgram correlogram estimation

anova 1-, 2-, n-ways analysis of variance

arima Box-Jenkins models

dfuller unit roots tests

graph produce a variety of graphs

regress least squares regression

predict generate fitted values, residuals, etc.

ttest perform 1-, 2-samples and paired t tests

test test linear hypotheses on parameters

36

testparm usefgul alternative to test

lincom linear combinations of parameters

cnsreg regression with linear constraints

nlcom non-linear combinations of parameters

testnl test nonlinear hypotheses on parameters

nl non linear least squares

ml maximum likelihood estimation with user-specific LLF

mfx marginal effects after nonlinear estimation

bstrap bootstrap sampling

ivreg instrumental variables regression

prais regression with AR(1) errors

, robust regression with robust standard errors

arch models of autoregressive conditional heteroskedasticity

sureg seemingly unrelated regressions

reg3 three-stages least squares

probit binomial probit estimation

oprobit ordered probit estimation

logit binomial logit estimation

ologit ordered logit estimation

tobit Tobit regression

cnreg censored normal regression

glm generalised linear models

heckman Heckman’s selection model

qreg quantile regression, including median regression

xtreg panel data estimation

In the following lectures you will see practical examples of these commands.

