Cog	gnome			Ü
No	me			
ma	tricola			
Firm	a e indirizzo posta elettronio	a (solo per chi non si è regis		
NOT	TA BENE: si accetta una sola	correzione nel gruppo di qu	@ uesiti 1-6	
1.	tasso <i>i</i> o a regime semplice partire dal primo gennaio 2	a tasso $i_1 = 4\%$ a seconda o 017, trattiene ad ogni inizio depositate un capitale il 01	e somme depositate e le fa cre che la giacenza sia superiore di anno una commissione par /11/2014 da ritirare il 01/00 del 2%.	all'anno o meno. Inoltre, a ri al 2% di quanto maturato
	(a) 0,74%	(b) 0,85%	(c) 0,96%	(d) 0,78%
2.	capitalizza ma contempora	neamente trattiene una cor	semplice a tasso $i=10\%$ in one maissione pari ad α volte la re il vostro capitale dopo sei	somma maturata, con $\alpha \in$
	(a) $\alpha_M = 1,64\%$	(b) $\alpha_M = 1,75\%$	(c) $\alpha_M = 1,46\%$	(d) $\alpha_M = 1,57\%$
3.			ai sei mesi a regime semplic nda opzione é sempre prefer	
	(a) dipende dal periodo	(b) dipende dai tassi	(c) sí, sempre	(d) no, mai
4.			ili, durata pari a 10 anni e tas re il piano di un anno, come o	
	(a) le é superiore per circa il 7%	(b) le é superiore per circa il 5%	(c) le é superiore per circa il 4%	(d) le é superiore per circa il 8%
5.	Un acquisto di un bene di 9 annuo?	843,75€ viene contrattato i	n 2 rate semestrali di 6000€.	A quanto ammonta il tasso
	(a) $i = 35, 12\%$	(b) $i = 28,72\%$	(c) $i = 31,11\%$	(d) $i = 30,61\%$
6.		uisto, sapendo che l'aliquot	nca tramite cui lo negoziate va fiscale é pari ad $\alpha = 11,5\%$,	
	(a) $c = 1,97 \in$	(b) $c = 1,47 \in$	(c) $c = 1,37 \in$	(d) $c = 1,77 \in$
7.	Un titolo presenta il seguer	te cash-flow:		
		$\{(0; -1200), (1$;548),(2;728)}.	
	Determinare la duration di t	ale titolo esclusivamente in	mesi (per difetto).	
	Risposta : <i>D</i> =		*	

8.	Un BTP Italia, emesso il primo marzo 2015, durata due anni, cedola semestrale a tasso cedolare $i = 1\%$, premio
	fedeltá al 4 per mille, viene acquistato per un nominale N = 1000€. La sequenza degli indici FOI giá usciti, che
	indicheremo con I_j , $j = 0, 1, 2, 3$, è la seguente:

$$I_0 = 103, I_1 = 103, 3, I_2 = 103, 5, I_3 = 103, 4.$$

In attesa dell'uscita dell'ultimo indice I_4 a marzo 2017, supponendo di tenere il titolo fino alla scadenza:

- a) determinare il minimo rendimento del titolo in percentuale, detto r_m , indipendentemente dal valore che uscirá di I_4 , con una approssimazione pari alla prima cifra decimale;
- b) determinare tra quali due valori deve uscire *I*₄ perché si abbia un rendimento compreso tra l'1,8% e il 2%.

Teoria

Dimostrare che il fattore di montante la cui funzione associata sia $f(t) = (1+i)^{t-1}$, ove i > 0, non è scindibile.

Soluzione primo quesito

Il montante fino al primo gennaio 2017 é

$$C(1+i_1t_1)\cdot (1+i)^2$$

ove $t_1 = 1/6$, mentre C é il capitale iniziale (dato che si rivelerá poi ininfluente). A questo punto, la banca si trattiene il 2% di tale somma, quindi rimane a maturare a regime semplice per cinque mesi solo il 98%. Il montante finale, all'uscita in data 01/06/2017, é dunque

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2),$$

ove $t_2 = 5/12$. L'equazione da impostare é alla fine

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2) = 1.02C.$$

Se dalla precedente formula si ricava i, si trova che

$$i = \sqrt{\frac{1,02}{0,98(1+i_1t_1)(1+i_1t_2)}} - 1 \cong 0,85\%.$$

Soluzione secondo quesito

Chiamando C il capitale versato sul conto corrente, dopo due mesi vi rimane

$$(1-\alpha)C\left(1+\frac{i}{6}\right).$$

Nei successivi due mesi, si capitalizza quella somma, poi le si toglie una percentuale pari ad α ossia rimane

$$(1-\alpha)\left((1-\alpha)C\left(1+\frac{i}{6}\right)\right)\left(1+\frac{i}{6}\right) = (1-\alpha)^2 \cdot C\left(1+\frac{i}{6}\right)^2.$$

Analogamente, nei successivi due mesi, quindi dopo sei mesi complessivi, la somma che rimane é

$$(1-\alpha)^3 \cdot C\left(1+\frac{i}{6}\right)^3$$
.

Il massimo α é quello in corrispondenza del quale la suddetta quantitá é uguale a C, ossia si deve risolvere l'equazione

$$(1 - \alpha_M)^3 \cdot C\left(1 + \frac{i}{6}\right)^3 = C$$

che ha come soluzione

$$\alpha_M = \frac{i/6}{1 + i/6}.$$

Inserendo i dati, si trova che α_M é pari circa a 1,64%.

Soluzione terzo quesito

Si noti che $\exp(i) - 1 \cong 0,02020134 > i_1$, quindi siamo nella situazione in cui la retta del regime semplice interseca la curva del composto in corrispondenza di una sola epoca $t^* > 0$. Inoltre, se si calcola il montante relativo al capitale di un euro a regime semplice al sesto mese, ossia per t = 0,5, si trova $M_s(0,5) = 1 + 0,5 \cdot 0,02 = 1,01$, mentre se si fa lo stesso a regime composto a tasso $i_1 = 2,01\%$, si ha che $M_c(0,5) = (1+0,0201)^{0,5} = 1,01$, ossia t^* é esattamente 0,5, pertanto, per qualunque durata superiore ai sei mesi prevale sempre il regime composto.

Soluzione quarto quesito

La rata R del piano alla francese é data da

$$R = D_0 \cdot \frac{i_m}{1 - (1 + i_m)^{-n}},\tag{1}$$

ove n = 120, $i_m = 1,1\%$, mentre D_0 é il prestito iniziale. Dopo tre anni, ossia k = 36 rate mensili, cambia il tasso, quindi é come se si ricominciasse un nuovo piano alla francese con una nuova rata R^* , tasso $i_m' = 1\%$, durata pari a sei anni (perché si riduce la durata di un anno, quindi ne rimangono sei e non sette), ossia p = 72 rate mensili, e debito iniziale pari al debito residuo D_k , dato da

$$D_k = D_0 \cdot \frac{1 - (1 + i_m)^{-n+k}}{1 - (1 + i_m)^{-n}}.$$
 (2)

La formula della rata di questo secondo piano, analogamente alla formula in eq. (22), è data da

$$R^* = D_k \cdot \frac{i'_m}{1 - (1 + i'_m)^{-p}}.$$

Se ora inseriamo nell'ultima formula quella dell'eq. (22), sostituendo D_k come nell'eq. (23), dopo qualche passaggio algebrico, si ha che

$$\frac{R^*}{R} = \frac{i'_m}{1 - (1 + i'_m)^{-72}} \cdot \frac{1 - (1 + i_m)^{-84}}{i_m}.$$

Inserendo i dati, si trova che

$$\frac{R^*}{R} \cong 1,0683,$$

quindi la nuova rata é superiore di circa il 7% alla vecchia.

Soluzione quinto quesito

L'equazione da impostare é la condizione di chiusura finanziaria, ossia

$$9843,75 = \frac{6000}{\sqrt{1+i}} + \frac{6000}{(1+i)}.$$

La suddetta equazione, con la sostituzione di variabile $v = 1/\sqrt{1+i}$, diventa di secondo grado, e l'unica soluzione finale accettabile é $i \cong 30,61\%$.

Soluzione sesto quesito

Siccome il prezzo di acquisto A=998 é inferiore al nominale N=1000, scatta l'imposta da versare al momento dell'acquisto, ossia $\alpha(N-A)$, con $\alpha=0,115$. Tenuto conto che si deve pagare anche una commissione fissa c alla banca che negozia il titolo, la somma finale complessiva da versare é $A+\alpha(N-A)+c$. Senza fare molti calcoli, é evidente che il rendimento diventa negativo se e solo se il nominale che ci verrá restituito alla scadenza (qualunque essa sia) é superiore alla somma effettivamente pagata all'acquisto, dunque l'equazione da impostare é

$$A + \alpha(N - A) + c = N,$$

da cui si ricava facilmente che

$$c = (N - A) \cdot (1 - \alpha) = 1,77.$$

Soluzione settimo quesito

Prima di tutto, bisogna determinare il rendimento di tale titolo, ossia il TIR. Il discounted cash-flow è dato da

$$G(x) = -1200 + \frac{548}{1+x} + \frac{728}{(1+x)^2}.$$

L'equazione algebrica G(x) = 0 è di secondo grado: se la risolvete nella variabile v = 1/(1+x), dopo qualche semplificazione algebrica, risulterá

$$182v^2 + 137v - 300 = 0$$
.

Tale equazione ammette una sola soluzione accettabile, ossia positiva, e, se poi ritornate alla variabile originaria, troverete che $x^* = 4\%$. Pertanto la duration di tale titolo è

$$D = \frac{\frac{548}{1,04} + \frac{728 \cdot 2}{(1,04)^2}}{1200} \simeq 1,561,$$

ossia diciotto mesi (per difetto).

Soluzione ottavo quesito

a) Si noti, dalla sequenza degli indici, che é presente inflazione nei primi due semestri, ma non nel terzo.
 La formula piú generale che si puó applicare, qualunque sia l'andamento degli indici FOI semestre per semestre, è

$$\alpha_j = \frac{M_j}{M_{i-1}} - 1, \ j = 1, \dots, n,$$
(3)

ove gli indici M_j , per ogni j che va da 1 fino a n (si noti che, nel nostro caso, n = 4), sono calcolati ricorsivamente nel seguente modo:

$$\begin{cases} M_j = \max\{I_j, M_{j-1}\}, \ j = 1, \dots, n; \\ M_0 = I_0. \end{cases}$$

Nel nostro caso, si ha dunque che $M_0 = 103$, $M_1 = 103$, $M_2 = 103$, $M_2 = 103$, $M_3 = 103$, mentre $M_3 = M_2 = 103$, $M_4 = 103$, $M_5 = 103$, $M_6 = 103$, $M_7 = 103$, $M_8 = 10$

Tenete conto che le formule per calcolarsi la cedola c_j , il capitale rivalutato CR_j e la remunerazione semestrale RS_j sono le stesse sia in caso inflazione che di deflazione, ossia

$$\begin{cases} c_{j} = \frac{1}{2}iN(1+\alpha_{j}); \\ CR_{j} = \alpha_{j}N \ j = 1,2,3,4; \\ RS_{j} = c_{j} + CR_{j}, \ j = 1,2,3; \\ RS_{4} = c_{4} + CR_{4} + 1,004 \cdot N. \end{cases}$$

$$(4)$$

In particolare, si noti che RS_4 tiene conto del premio fedeltá, sotto l'ipotesi che il titolo sia portato a scadenza. Facendo tutti i calcoli e ricordandosi di approssimare i coefficienti α_j alla quinta cifra decimale, per j = 1, 2, 3, si ha che:

Epoche	α_j	CR_j	c_{j}	RS_j
1	0,00291	2,91	5,01	7,92
2	0,00194	1,94	5,01	6,95
3	0	0	5	5

Pertanto, il cash-flow dell'investimento, che denoteremo A, é dato da

$$a_0 = -1000$$
, $a_1 = 7,92$, $a_2 = 6,95$, $a_3 = 5$, $a_4 = 1009 + z$,

ove si noti che a_4 comprende una parte certa, ossia la restituzione del nominale piú il premio fedeltá e la cedola minima classica pari a 5 euro, e una parte incerta, legata alla eventuale rivalutazione del quarto semestre, denotata con l'incognita z, ancora non conosciuta, perché dipende dall'indice I_4 , che al momento non possiamo conoscere, perché uscirá solo a marzo 2017. Si noti comunque che siccome a_4 , qui sopra scritta come 1009 + z, altro non é che RS_4 come appare nell'eq. (25), si ricava facilmente che

$$z = 1005\alpha_4. \tag{5}$$

Il minimo rendimento possibile, detto r_m , si avrá ovviamente nel caso in cui anche nell'ultimo semestre non scatti il meccanismo di rivalutazione, in corrispondenza a $\alpha_4 = 0$, che comporta automaticamente z = 0 in base all'eq. (26). Pertanto, il *discounted cash-flow* del titolo nella peggiore prospettiva, denominato $G_{\min}(x)$, sarebbe

$$G_{\text{Min}}(x) = -1000 + \frac{7,92}{(1+x)^{\frac{1}{2}}} + \frac{6,95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009}{(1+x)^2}.$$

Considerate il fatto che non siete in grado di trovare la soluzione esatta, denotata appunto r_m , dell' equazione $G_{\min}(x)=0$, che vi fornirebbe la risposta cercata, perché algebricamente troppo complicata (anche passando attraverso una opportuna sostituzione di variabile, avreste una equazione algebrica di quarto grado). Allora, ricordando che $G_{\min}(x)$ è una funzione strettamente decrescente, tale che $G_{\min}(x)>0$ per $x< r_m$ e $G_{\min}(x)<0$ per $x>r_m$, dobbiamo "testare il segno" di $G_{\min}(x)$ "buttandovi dentro" valori ragionevoli di x, rammentando che r_m é sicuramente superiore al tasso cedolare, quantomeno per il premio finale, e tenendo conto che il meccanismo di rivalutazione semestrale é scattato in due semestri, quindi ha senso considerare valori abbastanza superiori a i, anche se non eccessivamente. Se ad esempio inserite $r_1=1,4\%$, risulterá $G_{\min}(r_1)\simeq 0,946>0$, mentre con $r_2=1,5\%$ risulterá $G_{\min}(r_2)\simeq -1,004<0$, pertanto $r_1< r_m< r_2$, con l'approssimazione richiesta.

b) Il discounted cash-flow del titolo é dato da

$$G(x) = -1000 + \frac{7.92}{(1+x)^{\frac{1}{2}}} + \frac{6.95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009 + z}{(1+x)^2}.$$

Se desideriamo che il rendimento di tale titolo sia $r_3 = 1,8\%$ bisogna che r_3 sia il TIR di G(x), ossia l'unica soluzione appartenente a $]-1,+\infty[$ dell'equazione G(x)=0. Se inseriamo $r_3=0,018$ al posto di x ed eguagliamo a zero, si trova

$$z = 1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009.$$

Sfruttando poi l'eq. (26), ricaviamo direttamente che

$$\alpha_4 = \frac{1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009}{1005}.$$
 (6)

Ricordandoci di calcolare α_4 con cinque cifre decimali, se é positivo, significa che nell'ultimo semestre é scattato il meccanismo di rivalutazione, quindi c'è stata inflazione per cui, in base alla formula data in eq. (24), l'indice I_4 si é alzato rispetto al valore massimo registrato fino al semestre precedente, ossia $I_4 > M_3 = 103,5$ e pertanto

$$I_4 = M_4 = (1 + \alpha_4) \cdot M_3 = (1 + \alpha_4) \cdot 103,5. \tag{7}$$

Alla fine della procedura descritta, quindi, attraverso l'eq. (27), l'eq. (28) ci fornisce il valore dell'indice I_4 relativo al tasso r_3 . Se ripetiamo il tutto con $r_4 = 2\%$ al posto di r_3 , troveremo un altro corrispondente I_4 (ovviamente superiore al precedente): tali due valori di I_4 sono quelli richiesti. In particolare, in corrispondenza di r_3 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.00703$ e $I_4 = 104,23$, mentre in corrispondenza di r_4 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.01105$ e $I_4 = 104,64$.

Soluzione quesito teorico

La scindibilitá di un fattore di montante significa che la funzione f(t) ad esso associata soddisfa la proprietá

$$f(x) \cdot f(y) = f(x+y)$$
 per ogni $x, y > 0$.

Nel nostro caso, si ha che

$$f(x) \cdot f(y) = (1+i)^{x-1} \cdot (1+i)^{y-1} = (1+i)^{x+y-2},$$

mentre

$$f(x+y) = (1+i)^{x+y-1} > (1+i)^{x+y-2},$$

quindi si verifica sempre che

$$f(x) \cdot f(y) < f(x+y).$$

																								re	rrara 17 g	gennaio .	2017
Co	gı	no	m	e															_								
No	n	ıe		_	_			_			_		· I			_			1								
ma	tr	ic	<u>ol</u>	<u>a</u>	_		Т	Т		Г	$\overline{}$		l	7													
Firm	ıa	e iı	ndi	rizz	ZO]	pos	ta e	let	ttro	nic	a (solo	pe	r ch	i noı	n s	i è r	egis	trato	S	ul sito)						
NO7		BI		 F• e	 i a		ta 1	ma		 Ja (ione		 1 oru	ınr		i au	 ociti	 1.	 .6	@)				
1101		וט	⊐1 N .	L. 3	ıav	ccci	ia i	1116	<i>a</i> 50	na v	COI	IICZ	10110	, IIC	1 510	'Pŀ	<i>7</i> 0 u	ı qu	CSILI	1	O						
1.	C	ap	ital	izz	a n	na (con	ter	npo	ora	ne	ame	ente	tra	ttien	e ı	ına	con	nmis	sic	ce a tasso <i>i</i> one pari ac ostro capita	l α volte	la so	omr	na matui		
		(a)	α	_M =	= 2,	209	%				(b) ($\chi_M =$	= 2,	23%				(c) ($\alpha_M = 2,12$	ó		(d)	$\alpha_M=2,3$	32%	
2.																					nesi a regi zione é ser				sso $i=2^{6}$	% o a reg	zime
		(a)) sí	, se	mp	ore					(b) 1	no, i	nai					(c) (dipende da	ıl periodo)	(d)	dipende	dai tassi	i
3.	ta p fi	ass oar inc	so <i>i</i> tire o a	o a da que	re l p el 1	gin rim mo	ne s o ge mer	en eni ito	npl naio	ice o 20 Se o	a t 017 dep	tass 7, tr posi	o i ₁ attie tate	= 1 ene a un	% a ad o	se gn oita	cono i ini ile i	da c zio (1 01	he la di an /11/	a g inc '20	e deposita iacenza sia o una comn 114 da ritir	superio nissione j	re al pari a	l'an al 29	no o mei % di qua	no. Inolt nto matu	re, a irato
		(a)) 1	,729	%						(b)	1,27	%					(c)	1,64%			(d)	1,46%		
4.			acc	•	to	di ı	ın b	en	ne d	li 9	843	3,75	i€ τ	vien	e co	ntr	atta	ito ii	n 2 ra	at€	e semestral	i di 6000€	€. A	qua	anto amn	nonta il t	asso
		(a)) i :	= 2	8,7	2%					(b) i	i = 3	1,1	1%				(c)	i = 30,61%			(d)	i = 35, 12	2%	
5.	f	iss	a <i>c</i>	al r	no:	mei	nto	de	ll'a	cqı	iis	to, s		ndo							mite cui lo e é pari ad						
		(a)) c	= 1	,97	7€					(b) (c = 1	1,77	⁄€				(c) (<i>c</i> = 1,47€			(d)	c = 1,37	€	
6.	t	re a		ni il																	ata pari a 1 ino di un a						
		(a)		e é rca		_	erio	re	p€	er	(le é circa		_	ioı	e p	er	(c		le é supe circa il 5%	riore pe	er		le é su circa il 4	~	per
7.	Į	Jn	tito	olo j	pr€	eser	ıta i	1 s	egu	ıen	te	casl	n-flo	w:													
															$\{(0;$	-1	200),(1	548)),(2;728)}.						
	Ι	Det	err	nin	are	la	dura	ıtio	on c	di t	ale	tito	olo e	esclı	usiva	am	ente	e in	mes	i (_]	per difetto)						
	F	Ris	pos	sta:	D	=										. 1	nes	i.									

8.	Un BTP Italia, emesso il primo marzo 2015, durata due anni, cedola semestrale a tasso cedolare $i = 1\%$, premio
	fedeltá al 4 per mille, viene acquistato per un nominale N = 1000€. La sequenza degli indici FOI giá usciti, che
	indicheremo con I_j , $j = 0, 1, 2, 3$, è la seguente:

$$I_0 = 103, I_1 = 103, 3, I_2 = 103, 5, I_3 = 103, 4.$$

In attesa dell'uscita dell'ultimo indice I_4 a marzo 2017, supponendo di tenere il titolo fino alla scadenza:

- a) determinare il minimo rendimento del titolo in percentuale, detto r_m , indipendentemente dal valore che uscirá di I_4 , con una approssimazione pari alla prima cifra decimale;
- b) determinare tra quali due valori deve uscire *I*₄ perché si abbia un rendimento compreso tra l'1,8% e il 2%.

Teoria

Dimostrare che il fattore di montante la cui funzione associata sia $f(t) = (1+i)^{t-1}$, ove i > 0, non è scindibile.

Soluzione primo quesito

Chiamando C il capitale versato sul conto corrente, dopo due mesi vi rimane

$$(1-\alpha)C\left(1+\frac{i}{6}\right)$$
.

Nei successivi due mesi, si capitalizza quella somma, poi le si toglie una percentuale pari ad α ossia rimane

$$(1-\alpha)\left((1-\alpha)C\left(1+\frac{i}{6}\right)\right)\left(1+\frac{i}{6}\right) = (1-\alpha)^2 \cdot C\left(1+\frac{i}{6}\right)^2.$$

Analogamente, nei successivi due mesi, quindi dopo sei mesi complessivi, la somma che rimane é

$$(1-\alpha)^3 \cdot C\left(1+\frac{i}{6}\right)^3.$$

Il massimo α é quello in corrispondenza del quale la suddetta quantitá é uguale a C, ossia si deve risolvere l'equazione

$$(1 - \alpha_M)^3 \cdot C\left(1 + \frac{i}{6}\right)^3 = C$$

che ha come soluzione

$$\alpha_M = \frac{i/6}{1 + i/6}.$$

Inserendo i dati, si trova che α_M é pari circa a 2,12%.

Soluzione secondo quesito

Si noti che $\exp(i) - 1 \cong 0.02020134 > i_1$, quindi siamo nella situazione in cui la retta del regime semplice interseca la curva del composto in corrispondenza di una sola epoca $t^* > 0$. Inoltre, se si calcola il montante relativo al capitale di un euro a regime semplice al sesto mese, ossia per t = 0.5, si trova $M_s(0.5) = 1 + 0.5 \cdot 0.02 = 1.01$, mentre se si fa lo stesso a regime composto a tasso $i_1 = 2.01\%$, si ha che $M_c(0.5) = (1 + 0.0201)^{0.5} = 1.01$, ossia t^* é esattamente 0.5, pertanto, per qualunque durata superiore ai sei mesi prevale sempre il regime composto.

Soluzione terzo quesito

Il montante fino al primo gennaio 2017 é

$$C(1+i_1t_1)\cdot(1+i)^2$$

ove $t_1 = 1/6$, mentre C é il capitale iniziale (dato che si rivelerá poi ininfluente). A questo punto, la banca si trattiene il 2% di tale somma, quindi rimane a maturare a regime semplice per cinque mesi solo il 98%. Il montante finale, all'uscita in data 01/06/2017, é dunque

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2)$$

ove $t_2 = 5/12$. L'equazione da impostare é alla fine

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2) = 1.02C.$$

Se dalla precedente formula si ricava i, si trova che

$$i = \sqrt{\frac{1,02}{0,98(1+i_1t_1)(1+i_1t_2)}} - 1 \cong 1,72\%.$$

Soluzione quarto quesito

L'equazione da impostare é la condizione di chiusura finanziaria, ossia

$$9843,75 = \frac{6000}{\sqrt{1+i}} + \frac{6000}{(1+i)}.$$

La suddetta equazione, con la sostituzione di variabile $v = 1/\sqrt{1+i}$, diventa di secondo grado, e l'unica soluzione finale accettabile é $i \cong 30,61\%$.

Soluzione quinto quesito

Siccome il prezzo di acquisto A = 998 é inferiore al nominale N = 1000, scatta l'imposta da versare al momento dell'acquisto, ossia $\alpha(N-A)$, con $\alpha = 0.115$. Tenuto conto che si deve pagare anche una commissione fissa c alla banca che negozia il titolo, la somma finale complessiva da versare é $A + \alpha(N-A) + c$. Senza fare molti calcoli, é evidente che il rendimento diventa negativo se e solo se il nominale che ci verrá restituito alla scadenza (qualunque essa sia) é superiore alla somma effettivamente pagata all'acquisto, dunque l'equazione da impostare é

$$A + \alpha(N - A) + c = N$$
,

da cui si ricava facilmente che

$$c = (N - A) \cdot (1 - \alpha) = 1,77.$$

Soluzione sesto quesito

La rata R del piano alla francese é data da

$$R = D_0 \cdot \frac{i_m}{1 - (1 + i_m)^{-n}},\tag{8}$$

ove n = 120, $i_m = 1,1\%$, mentre D_0 é il prestito iniziale. Dopo tre anni, ossia k = 36 rate mensili, cambia il tasso, quindi é come se si ricominciasse un nuovo piano alla francese con una nuova rata R^* , tasso $i_m' = 1\%$, durata pari a sei anni (perché si riduce la durata di un anno, quindi ne rimangono sei e non sette), ossia p = 72 rate mensili, e debito iniziale pari al debito residuo D_k , dato da

$$D_k = D_0 \cdot \frac{1 - (1 + i_m)^{-n+k}}{1 - (1 + i_m)^{-n}}. (9)$$

La formula della rata di questo secondo piano, analogamente alla formula in eq. (22), è data da

$$R^* = D_k \cdot \frac{i'_m}{1 - (1 + i'_m)^{-p}}.$$

Se ora inseriamo nell'ultima formula quella dell'eq. (22), sostituendo D_k come nell'eq. (23), dopo qualche passaggio algebrico, si ha che

$$\frac{R^*}{R} = \frac{i'_m}{1 - (1 + i'_m)^{-72}} \cdot \frac{1 - (1 + i_m)^{-84}}{i_m}.$$

Inserendo i dati, si trova che

$$\frac{R^*}{R} \cong 1,0683,$$

quindi la nuova rata é superiore di circa il 7% alla vecchia.

Soluzione settimo quesito

Prima di tutto, bisogna determinare il rendimento di tale titolo, ossia il TIR. Il discounted cash-flow è dato da

$$G(x) = -1200 + \frac{548}{1+x} + \frac{728}{(1+x)^2}.$$

L'equazione algebrica G(x) = 0 è di secondo grado: se la risolvete nella variabile v = 1/(1+x), dopo qualche semplificazione algebrica, risulterá

$$182v^2 + 137v - 300 = 0.$$

Tale equazione ammette una sola soluzione accettabile, ossia positiva, e, se poi ritornate alla variabile originaria, troverete che $x^* = 4\%$. Pertanto la duration di tale titolo è

$$D = \frac{\frac{548}{1,04} + \frac{728 \cdot 2}{(1,04)^2}}{1200} \simeq 1,561,$$

ossia diciotto mesi (per difetto).

Soluzione ottavo quesito

a) Si noti, dalla sequenza degli indici, che é presente inflazione nei primi due semestri, ma non nel terzo.

La formula piú generale che si puó applicare, **qualunque sia l'andamento degli indici FOI semestre per semestre**, è

$$\alpha_j = \frac{M_j}{M_{j-1}} - 1, \ j = 1, \dots, n,$$
(10)

ove gli indici M_j , per ogni j che va da 1 fino a n (si noti che, nel nostro caso, n = 4), sono calcolati ricorsivamente nel seguente modo:

$$\begin{cases} M_j = \max\{I_j, M_{j-1}\}, \ j = 1, \dots, n; \\ M_0 = I_0. \end{cases}$$

Nel nostro caso, si ha dunque che $M_0 = 103$, $M_1 = 103$, $M_2 = 103$, $M_2 = 103$, $M_3 = 103$, mentre $M_3 = M_2 = 103$, $M_4 = 103$, $M_5 = 103$, $M_6 = 103$, $M_7 = 103$, $M_8 = 10$

Tenete conto che le formule per calcolarsi la cedola c_j , il capitale rivalutato CR_j e la remunerazione semestrale RS_j sono le stesse sia in caso inflazione che di deflazione, ossia

$$\begin{cases}
c_{j} = \frac{1}{2}iN(1+\alpha_{j}); \\
CR_{j} = \alpha_{j}N \ j = 1,2,3,4; \\
RS_{j} = c_{j} + CR_{j}, \ j = 1,2,3; \\
RS_{4} = c_{4} + CR_{4} + 1,004 \cdot N.
\end{cases}$$
(11)

In particolare, si noti che RS_4 tiene conto del premio fedeltá, sotto l'ipotesi che il titolo sia portato a scadenza. Facendo tutti i calcoli e ricordandosi di approssimare i coefficienti α_j alla quinta cifra decimale, per j = 1, 2, 3, si ha che:

Epoche	α_j	CR_j	c_{j}	RS_j
1	0,00291	2,91	5,01	7,92
2	0,00194	1,94	5,01	6,95
3	0	0	5	5

Pertanto, il cash-flow dell'investimento, che denoteremo A, é dato da

$$a_0 = -1000$$
, $a_1 = 7.92$, $a_2 = 6.95$, $a_3 = 5$, $a_4 = 1009 + z$,

ove si noti che a_4 comprende una parte certa, ossia la restituzione del nominale piú il premio fedeltá e la cedola minima classica pari a 5 euro, e una parte incerta, legata alla eventuale rivalutazione del quarto semestre, denotata con l'incognita z, ancora non conosciuta, perché dipende dall'indice I_4 , che al momento non possiamo conoscere, perché uscirá solo a marzo 2017. Si noti comunque che siccome a_4 , qui sopra scritta come 1009 + z, altro non é che RS_4 come appare nell'eq. (25), si ricava facilmente che

$$z = 1005\alpha_4. \tag{12}$$

Il minimo rendimento possibile, detto r_m , si avrá ovviamente nel caso in cui anche nell'ultimo semestre non scatti il meccanismo di rivalutazione, in corrispondenza a $\alpha_4 = 0$, che comporta automaticamente z = 0 in base all'eq. (26). Pertanto, il *discounted cash-flow* del titolo nella peggiore prospettiva, denominato $G_{\min}(x)$, sarebbe

$$G_{\text{Min}}(x) = -1000 + \frac{7.92}{(1+x)^{\frac{1}{2}}} + \frac{6.95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009}{(1+x)^2}.$$

Considerate il fatto che non siete in grado di trovare la soluzione esatta, denotata appunto r_m , dell' equazione $G_{\min}(x) = 0$, che vi fornirebbe la risposta cercata, perché algebricamente troppo complicata (anche passando attraverso una opportuna sostituzione di variabile, avreste una equazione algebrica di quarto grado). Allora, ricordando che $G_{\min}(x)$ è una funzione strettamente decrescente, tale che $G_{\min}(x) > 0$ per $x < r_m$ e $G_{\min}(x) < 0$ per $x > r_m$, dobbiamo "testare il segno" di $G_{\min}(x)$ "buttandovi dentro" valori ragionevoli di x, rammentando che r_m é sicuramente superiore al tasso cedolare, quantomeno per il premio finale, e tenendo conto che il meccanismo di rivalutazione semestrale é scattato in due semestri, quindi ha senso considerare valori abbastanza superiori a i, anche se non eccessivamente. Se ad esempio inserite $r_1 = 1,4\%$, risulterá $G_{\min}(r_1) \simeq 0,946 > 0$, mentre con $r_2 = 1,5\%$ risulterá $G_{\min}(r_2) \simeq -1,004 < 0$, pertanto $r_1 < r_m < r_2$, con l'approssimazione richiesta.

b) Il discounted cash-flow del titolo é dato da

$$G(x) = -1000 + \frac{7,92}{(1+x)^{\frac{1}{2}}} + \frac{6,95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009 + z}{(1+x)^2}.$$

Se desideriamo che il rendimento di tale titolo sia $r_3 = 1,8\%$ bisogna che r_3 sia il TIR di G(x), ossia l'unica soluzione appartenente a $]-1,+\infty[$ dell'equazione G(x)=0. Se inseriamo $r_3=0,018$ al posto di x ed eguagliamo a zero, si trova

$$z = 1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009.$$

Sfruttando poi l'eq. (26), ricaviamo direttamente che

$$\alpha_4 = \frac{1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009}{1005}.$$
 (13)

Ricordandoci di calcolare α_4 con cinque cifre decimali, se é positivo, significa che nell'ultimo semestre é scattato il meccanismo di rivalutazione, quindi c'è stata inflazione per cui, in base alla formula data in eq. (24), l'indice I_4 si é alzato rispetto al valore massimo registrato fino al semestre precedente, ossia $I_4 > M_3 = 103,5$ e pertanto

$$I_4 = M_4 = (1 + \alpha_4) \cdot M_3 = (1 + \alpha_4) \cdot 103, 5. \tag{14}$$

Alla fine della procedura descritta, quindi, attraverso l'eq. (27), l'eq. (28) ci fornisce il valore dell'indice I_4 relativo al tasso r_3 . Se ripetiamo il tutto con $r_4 = 2\%$ al posto di r_3 , troveremo un altro corrispondente I_4 (ovviamente superiore al precedente): tali due valori di I_4 sono quelli richiesti. In particolare, in corrispondenza di r_3 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.00703$ e $I_4 = 104.23$, mentre in corrispondenza di r_4 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.01105$ e $I_4 = 104.64$.

Soluzione quesito teorico

La scindibilitá di un fattore di montante significa che la funzione f(t) ad esso associata soddisfa la proprietá

$$f(x) \cdot f(y) = f(x+y)$$
 per ogni $x, y > 0$.

Nel nostro caso, si ha che

$$f(x) \cdot f(y) = (1+i)^{x-1} \cdot (1+i)^{y-1} = (1+i)^{x+y-2},$$

mentre

$$f(x+y) = (1+i)^{x+y-1} > (1+i)^{x+y-2}$$

quindi si verifica sempre che

$$f(x) \cdot f(y) < f(x+y).$$

																					rer	rrar	a 1/ {	genna	10 2017
Cog	ognome																								
No	me																								
ma	tric	<u>cola</u>	1			1	_	_			1														
Firm	a e i	indir	izzo	pos	ta el	ettro	onio	ca (solo	per	chi	non	si è 1	egis	trato	sul	sito)								
																			@						
NOT	АВ	ENE	: S1	accet	ta u	na so	ola	cor	rrezi	ione	nel	grup	opo c	ıı qu	esiti	1-6									
1.																			sempl e pref			sso	i=29	% оа	regime
	(a) di	pen	de da	al pe	eriod	lo	(b) s	sí, se	mpi	re			(0) dip	ende	dai ta	ıssi	((d)	no,	mai		
2.	tas: pai fine	so <i>i</i> o rtire o a o	o a r dal quel	egin prim mo:	ne se lo ge men	mpl nnai to.	ice io 2 Se	a ta 2017 dep	asso 7, tra posi	i ₁ = attie tate	= 2,5 ne a un	5% a d og capi	seco ni ini	nda o izio o il 01,	che i li ar /11/	la gia mo u ′2014	.cenza na co	a sia si mmiss	aperio sione p	re all pari a	l'an al 29	ino % di	o me i quai	no. In	posto a oltre, a aturato r cui il
	(a	1) 1,	10%					(b) 1	1,339	%				(0	1,6	52%			((d)	1,2	8%		
3.	cap	oitali	zza	ma	cont	emp	ora	anea	ame	nte	trat	tiene	una	com	mis	sione	e pari	ad α		la so	mm	na r			te mesi on $\alpha \in$
	(a	α_{N}	$a_{I} = 1$	1,609	%			(b) ($x_M =$	= 1,8	80%			(0	α_M	=1,5	50%		((d)	α_M	= 1,7	70%	
4.	fiss	sa c a	ıl m		nto d	dell'a	acq	uis	to, s	sape:	ndo														issione mite di
	(a) c =	= 1,	47€				(b) a	c = 1	,97	€			(0	c) c=	1,77	€		((d)	c =	1,37	€	
5.	tre		i il t																						, dopo tto alla
	(a			supe l 4%	erior	e p	er	(e é circa			ore	per	(0		é su ca il 7	•	re pe	r (é su a il 8	•	re per
6.		acq nuo?		o di 1	un b	ene (di 9	9843	3,75	€ v	iene	con	tratta	ato ir	12 r	ate se	emest	rali di	6000€	€. A	qua	into	amn	nonta	il tasso
	(a	i) i =	= 30,	61%				(b) <i>i</i>	= 3	5,12	2%			(0	i =	31,11	1%		((d)	i =	28,72	2%	
7.	Un	tito	lo p	reser	nta il	seg	uer	nte (cash	n-flo	w:														
											{	(0; -	1200),(1;	548),(2;	728)}.	•							
	De	term	inaı	re la	dura	tion	di 1	tale	tito	olo e	sclu	sivaı	ment	e in i	mes	i (peı	difet	to).							

Risposta: $D = \dots$ mesi.

8.	Un BTP Italia, emesso il primo marzo 2015, durata due anni, cedola semestrale a tasso cedolare $i = 1\%$, premio
	fedeltá al 4 per mille, viene acquistato per un nominale N = 1000€. La sequenza degli indici FOI giá usciti, che
	indicheremo con I_j , $j = 0, 1, 2, 3$, è la seguente:

$$I_0 = 103, I_1 = 103, 3, I_2 = 103, 5, I_3 = 103, 4.$$

In attesa dell'uscita dell'ultimo indice I_4 a marzo 2017, supponendo di tenere il titolo fino alla scadenza:

- a) determinare il minimo rendimento del titolo in percentuale, detto r_m , indipendentemente dal valore che uscirá di I_4 , con una approssimazione pari alla prima cifra decimale;
- b) determinare tra quali due valori deve uscire *I*₄ perché si abbia un rendimento compreso tra l'1,8% e il 2%.

Teoria

Dimostrare che il fattore di montante la cui funzione associata sia $f(t) = (1+i)^{t-1}$, ove i > 0, non è scindibile.

Soluzione primo quesito

Si noti che $\exp(i) - 1 \cong 0,02020134 > i_1$, quindi siamo nella situazione in cui la retta del regime semplice interseca la curva del composto in corrispondenza di una sola epoca $t^* > 0$. Inoltre, se si calcola il montante relativo al capitale di un euro a regime semplice al sesto mese, ossia per t = 0,5, si trova $M_s(0,5) = 1 + 0,5 \cdot 0,02 = 1,01$, mentre se si fa lo stesso a regime composto a tasso $i_1 = 2,01\%$, si ha che $M_c(0,5) = (1+0,0201)^{0.5} = 1,01$, ossia t^* é esattamente 0,5, pertanto, per qualunque durata superiore ai sei mesi prevale sempre il regime composto.

Soluzione secondo quesito

Il montante fino al primo gennaio 2017 é

$$C(1+i_1t_1)\cdot(1+i)^2$$

ove $t_1 = 1/6$, mentre C é il capitale iniziale (dato che si rivelerá poi ininfluente). A questo punto, la banca si trattiene il 2% di tale somma, quindi rimane a maturare a regime semplice per cinque mesi solo il 98%. Il montante finale, all'uscita in data 01/06/2017, é dunque

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2),$$

ove $t_2 = 5/12$. L'equazione da impostare é alla fine

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2) = 1.02C.$$

Se dalla precedente formula si ricava i, si trova che

$$i = \sqrt{\frac{1,02}{0,98(1+i_1t_1)(1+i_1t_2)}} - 1 \cong 1,28\%.$$

Soluzione terzo quesito

Chiamando C il capitale versato sul conto corrente, dopo due mesi vi rimane

$$(1-\alpha)C\left(1+\frac{i}{6}\right).$$

Nei successivi due mesi, si capitalizza quella somma, poi le si toglie una percentuale pari ad α ossia rimane

$$(1-\alpha)\left((1-\alpha)C\left(1+\frac{i}{6}\right)\right)\left(1+\frac{i}{6}\right) = (1-\alpha)^2 \cdot C\left(1+\frac{i}{6}\right)^2.$$

Analogamente, nei successivi due mesi, quindi dopo sei mesi complessivi, la somma che rimane é

$$(1-\alpha)^3 \cdot C\left(1+\frac{i}{6}\right)^3.$$

Il massimo α é quello in corrispondenza del quale la suddetta quantitá é uguale a *C*, ossia si deve risolvere l'equazione

$$(1 - \alpha_M)^3 \cdot C\left(1 + \frac{i}{6}\right)^3 = C$$

che ha come soluzione

$$\alpha_M = \frac{i/6}{1 + i/6}.$$

Inserendo i dati, si trova che α_M é pari circa a 1,80%.

Soluzione quarto quesito

Siccome il prezzo di acquisto A=998 é inferiore al nominale N=1000, scatta l'imposta da versare al momento dell'acquisto, ossia $\alpha(N-A)$, con $\alpha=0,115$. Tenuto conto che si deve pagare anche una commissione fissa c alla banca che negozia il titolo, la somma finale complessiva da versare é $A+\alpha(N-A)+c$. Senza fare molti calcoli, é evidente che il rendimento diventa negativo se e solo se il nominale che ci verrá restituito alla scadenza (qualunque essa sia) é superiore alla somma effettivamente pagata all'acquisto, dunque l'equazione da impostare é

$$A + \alpha(N - A) + c = N,$$

da cui si ricava facilmente che

$$c = (N - A) \cdot (1 - \alpha) = 1,77.$$

Soluzione quinto quesito

La rata R del piano alla francese é data da

$$R = D_0 \cdot \frac{i_m}{1 - (1 + i_m)^{-n}},\tag{15}$$

ove n = 120, $i_m = 1,1\%$, mentre D_0 é il prestito iniziale. Dopo tre anni, ossia k = 36 rate mensili, cambia il tasso, quindi é come se si ricominciasse un nuovo piano alla francese con una nuova rata R^* , tasso $i_m' = 1\%$, durata pari a sei anni (perché si riduce la durata di un anno, quindi ne rimangono sei e non sette), ossia p = 72 rate mensili, e debito iniziale pari al debito residuo D_k , dato da

$$D_k = D_0 \cdot \frac{1 - (1 + i_m)^{-n+k}}{1 - (1 + i_m)^{-n}}.$$
(16)

La formula della rata di questo secondo piano, analogamente alla formula in eq. (22), è data da

$$R^* = D_k \cdot \frac{i'_m}{1 - (1 + i'_m)^{-p}}.$$

Se ora inseriamo nell'ultima formula quella dell'eq. (22), sostituendo D_k come nell'eq. (23), dopo qualche passaggio algebrico, si ha che

$$\frac{R^*}{R} = \frac{i'_m}{1 - (1 + i'_m)^{-72}} \cdot \frac{1 - (1 + i_m)^{-84}}{i_m}.$$

Inserendo i dati, si trova che

$$\frac{R^*}{R} \cong 1,0683,$$

quindi la nuova rata é superiore di circa il 7% alla vecchia.

Soluzione sesto quesito

L'equazione da impostare é la condizione di chiusura finanziaria, ossia

$$9843,75 = \frac{6000}{\sqrt{1+i}} + \frac{6000}{(1+i)}.$$

La suddetta equazione, con la sostituzione di variabile $v = 1/\sqrt{1+i}$, diventa di secondo grado, e l'unica soluzione finale accettabile é $i \cong 30,61\%$.

Soluzione settimo quesito

Prima di tutto, bisogna determinare il rendimento di tale titolo, ossia il TIR. Il discounted cash-flow è dato da

$$G(x) = -1200 + \frac{548}{1+x} + \frac{728}{(1+x)^2}.$$

L'equazione algebrica G(x) = 0 è di secondo grado: se la risolvete nella variabile v = 1/(1+x), dopo qualche semplificazione algebrica, risulterá

$$182v^2 + 137v - 300 = 0.$$

Tale equazione ammette una sola soluzione accettabile, ossia positiva, e, se poi ritornate alla variabile originaria, troverete che $x^* = 4\%$. Pertanto la duration di tale titolo è

$$D = \frac{\frac{548}{1,04} + \frac{728 \cdot 2}{(1,04)^2}}{1200} \simeq 1,561,$$

ossia diciotto mesi (per difetto).

Soluzione ottavo quesito

a) Si noti, dalla sequenza degli indici, che é presente inflazione nei primi due semestri, ma non nel terzo.
 La formula piú generale che si puó applicare, qualunque sia l'andamento degli indici FOI semestre per semestre, è

$$\alpha_j = \frac{M_j}{M_{j-1}} - 1, \ j = 1, \dots, n,$$
(17)

ove gli indici M_j , per ogni j che va da 1 fino a n (si noti che, nel nostro caso, n = 4), sono calcolati ricorsivamente nel seguente modo:

$$\begin{cases} M_j = \max\{I_j, M_{j-1}\}, \ j = 1, \dots, n; \\ M_0 = I_0. \end{cases}$$

Nel nostro caso, si ha dunque che $M_0 = 103$, $M_1 = 103$, $M_2 = 103$, $M_2 = 103$, $M_3 = 103$, mentre $M_3 = M_2 = 103$, $M_4 = 103$, $M_5 = 103$, $M_6 = 103$, $M_7 = 103$, $M_8 = 10$

Tenete conto che le formule per calcolarsi la cedola c_j , il capitale rivalutato CR_j e la remunerazione semestrale RS_j sono le stesse sia in caso inflazione che di deflazione, ossia

$$\begin{cases}
c_{j} = \frac{1}{2}iN(1+\alpha_{j}); \\
CR_{j} = \alpha_{j}N \ j = 1,2,3,4; \\
RS_{j} = c_{j} + CR_{j}, \ j = 1,2,3; \\
RS_{4} = c_{4} + CR_{4} + 1,004 \cdot N.
\end{cases}$$
(18)

In particolare, si noti che RS_4 tiene conto del premio fedeltá, sotto l'ipotesi che il titolo sia portato a scadenza. Facendo tutti i calcoli e ricordandosi di approssimare i coefficienti α_j alla quinta cifra decimale, per j = 1, 2, 3, si ha che:

Epoche	α_j	CR_j	c_{j}	RS_j
1	0,00291	2,91	5,01	7,92
2	0,00194	1,94	5,01	6,95
3	0	0	5	5

Pertanto, il cash-flow dell'investimento, che denoteremo A, é dato da

$$a_0 = -1000$$
, $a_1 = 7,92$, $a_2 = 6,95$, $a_3 = 5$, $a_4 = 1009 + z$,

ove si noti che a_4 comprende una parte certa, ossia la restituzione del nominale piú il premio fedeltá e la cedola minima classica pari a 5 euro, e una parte incerta, legata alla eventuale rivalutazione del quarto semestre, denotata con l'incognita z, ancora non conosciuta, perché dipende dall'indice I_4 , che al momento non possiamo conoscere, perché uscirá solo a marzo 2017. Si noti comunque che siccome a_4 , qui sopra scritta come 1009 + z, altro non é che RS_4 come appare nell'eq. (25), si ricava facilmente che

$$z = 1005\alpha_4. \tag{19}$$

Il minimo rendimento possibile, detto r_m , si avrá ovviamente nel caso in cui anche nell'ultimo semestre non scatti il meccanismo di rivalutazione, in corrispondenza a $\alpha_4 = 0$, che comporta automaticamente z = 0 in base all'eq. (26). Pertanto, il *discounted cash-flow* del titolo nella peggiore prospettiva, denominato $G_{\min}(x)$, sarebbe

$$G_{\text{Min}}(x) = -1000 + \frac{7,92}{(1+x)^{\frac{1}{2}}} + \frac{6,95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009}{(1+x)^2}.$$

Considerate il fatto che non siete in grado di trovare la soluzione esatta, denotata appunto r_m , dell' equazione $G_{\min}(x)=0$, che vi fornirebbe la risposta cercata, perché algebricamente troppo complicata (anche passando attraverso una opportuna sostituzione di variabile, avreste una equazione algebrica di quarto grado). Allora, ricordando che $G_{\min}(x)$ è una funzione strettamente decrescente, tale che $G_{\min}(x)>0$ per $x< r_m$ e $G_{\min}(x)<0$ per $x>r_m$, dobbiamo "testare il segno" di $G_{\min}(x)$ "buttandovi dentro" valori ragionevoli di x, rammentando che r_m é sicuramente superiore al tasso cedolare, quantomeno per il premio finale, e tenendo conto che il meccanismo di rivalutazione semestrale é scattato in due semestri, quindi ha senso considerare valori abbastanza superiori a i, anche se non eccessivamente. Se ad esempio inserite $r_1=1,4\%$, risulterá $G_{\min}(r_1)\simeq 0,946>0$, mentre con $r_2=1,5\%$ risulterá $G_{\min}(r_2)\simeq -1,004<0$, pertanto $r_1< r_m< r_2$, con l'approssimazione richiesta.

b) Il discounted cash-flow del titolo é dato da

$$G(x) = -1000 + \frac{7,92}{(1+x)^{\frac{1}{2}}} + \frac{6,95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009 + z}{(1+x)^2}.$$

Se desideriamo che il rendimento di tale titolo sia $r_3 = 1,8\%$ bisogna che r_3 sia il TIR di G(x), ossia l'unica soluzione appartenente a $]-1,+\infty[$ dell'equazione G(x)=0. Se inseriamo $r_3=0,018$ al posto di x ed eguagliamo a zero, si trova

$$z = 1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009.$$

Sfruttando poi l'eq. (26), ricaviamo direttamente che

$$\alpha_4 = \frac{1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009}{1005}. \tag{20}$$

Ricordandoci di calcolare α_4 con cinque cifre decimali, se é positivo, significa che nell'ultimo semestre é scattato il meccanismo di rivalutazione, quindi c'è stata inflazione per cui, in base alla formula data in eq. (24), l'indice I_4 si é alzato rispetto al valore massimo registrato fino al semestre precedente, ossia $I_4 > M_3 = 103,5$ e pertanto

$$I_4 = M_4 = (1 + \alpha_4) \cdot M_3 = (1 + \alpha_4) \cdot 103,5.$$
 (21)

Alla fine della procedura descritta, quindi, attraverso l'eq. (27), l'eq. (28) ci fornisce il valore dell'indice I_4 relativo al tasso r_3 . Se ripetiamo il tutto con $r_4 = 2\%$ al posto di r_3 , troveremo un altro corrispondente I_4 (ovviamente superiore al precedente): tali due valori di I_4 sono quelli richiesti. In particolare, in corrispondenza di r_3 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.00703$ e $I_4 = 104,23$, mentre in corrispondenza di r_4 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.01105$ e $I_4 = 104,64$.

Soluzione quesito teorico

La scindibilitá di un fattore di montante significa che la funzione f(t) ad esso associata soddisfa la proprietá

$$f(x) \cdot f(y) = f(x+y)$$
 per ogni $x, y > 0$.

Nel nostro caso, si ha che

$$f(x) \cdot f(y) = (1+i)^{x-1} \cdot (1+i)^{y-1} = (1+i)^{x+y-2},$$

mentre

$$f(x+y) = (1+i)^{x+y-1} > (1+i)^{x+y-2},$$

quindi si verifica sempre che

$$f(x) \cdot f(y) < f(x+y).$$

																			1.0	CII	arc	1 1/ }	geriria	10 201
Cog	gnoi	ne																						
No	me							1					_											
ma	<u>tricc</u>	ola 	T	Τ	Τ	Т	Т	l]															
Firm	a e in	dirizz	o pos	ta el	ettro	nica	(solo	o per	chi	non	ı si è	regi	stra	ito s	sul sit	0)								
NOT	'Λ RF	 NE: si			na sc			iono	nol	oru:		 di aı	100	 i+i 1	 -6			@						
NOI	A DE	INE. SI	accei	.ta ui	iia sc	ла СС	JITEZ	10116	пет	gru	ppo	ui qi	ues	111 1	-0									
1.		n piano nni il t hia?																						
		le é circa i	_	erior	е ре	er		le é circa		_	ore	per			le é circa	_	riore	per	(d)			é su a il 7	_	re pe
2.	Un a	cquist 10?	o di ı	un be	ene c	li 984	43,75	5€ v	iene	e cor	ntrat	tato i	in 2	rat	e sem	estral	i di 6	000€.	A qu	ıan	nto	amn	nonta	il tass
	(a)	i = 35	,12%				(b)	i = 3	0,61	%				(c)	i = 31	,11%			(d)) i	=2	28,72	2%	
3.		te inve posto																			50 i	= 29	% оа	regim
	(a)	dipen	de da	al pe	riod	0	(b)	dipe	nde	dai	tassi	i		(c)	no, m	nai			(d)) Sí	í, s	emp:	re	
4.	tasso parti fino	banca i o a : re dal a que tante i	regim prim l mo	ne se lo ge men	mpli nnai to. S	ice a o 201 Se de	tasso 17, tr epos	o i ₁ = attie itate	= 3,5 ne a un	5% a d og cap	seco gni ir itale	onda nizio il 0	ch di 1/1	e la ann 1/20	giace o una 014 d	nza si comr a ritir	a sup nissic are il	eriore one pa	all'a ri al 2	nn 2%	no di	mei quai	no. In nto m	oltre, aturat
	(a)	0,87%)				(b)	0,659	%					(c)	0,99%	ó			(d)	0),76	5%		
5.	capit	ersate talizza , per q	ma o	conte	emp	oran	eame	ente	trat	tiene	e un	a coi	nm	issi	one p	ari ac	lαv	olte la	som	ma				
	(a)	$\alpha_M =$	1,999	%			(b)	$\alpha_M =$	= 2,5	50%				(c)	$\alpha_M =$	2,45%	6		(d)) α	λ _M :	= 2, 2	28%	
6.	fissa	c al mendim	iomei	nto c	lell'a	ıcqui	isto,	sape	ndo															
	(a)	c = 1,	77€				(b)	c = 1	,97=	€				(c)	c=1	,47€			(d)) c	=	1,37	€	
7.	Un t	itolo p	reser	nta il	segı	ıente	e cas	h-flo	w:															
									{	(0; -	-120	0),(1	;54	18),	(2;728	3)}.								
	Dete	rmina	re la	dura	tion (di tal	le tite	olo e	sclu	siva	men	ite in	m	esi (per d	ifetto)								

Risposta: $D = \dots$ mesi.

8.	Un BTP Italia, emesso il primo marzo 2015, durata due anni, cedola semestrale a tasso cedolare $i = 1\%$, premio
	fedeltá al 4 per mille, viene acquistato per un nominale N = 1000€. La sequenza degli indici FOI giá usciti, che
	indicheremo con I_j , $j = 0, 1, 2, 3$, è la seguente:

$$I_0 = 103, I_1 = 103, 3, I_2 = 103, 5, I_3 = 103, 4.$$

In attesa dell'uscita dell'ultimo indice I_4 a marzo 2017, supponendo di tenere il titolo fino alla scadenza:

- a) determinare il minimo rendimento del titolo in percentuale, detto r_m , indipendentemente dal valore che uscirá di I_4 , con una approssimazione pari alla prima cifra decimale;
- b) determinare tra quali due valori deve uscire *I*₄ perché si abbia un rendimento compreso tra l'1,8% e il 2%.

Teoria

Dimostrare che il fattore di montante la cui funzione associata sia $f(t) = (1+i)^{t-1}$, ove i > 0, non è scindibile.

Soluzione primo quesito

La rata R del piano alla francese é data da

$$R = D_0 \cdot \frac{i_m}{1 - (1 + i_m)^{-n}},\tag{22}$$

ove n = 120, $i_m = 1,1\%$, mentre D_0 é il prestito iniziale. Dopo tre anni, ossia k = 36 rate mensili, cambia il tasso, quindi é come se si ricominciasse un nuovo piano alla francese con una nuova rata R^* , tasso $i_m' = 1\%$, durata pari a sei anni (perché si riduce la durata di un anno, quindi ne rimangono sei e non sette), ossia p = 72 rate mensili, e debito iniziale pari al debito residuo D_k , dato da

$$D_k = D_0 \cdot \frac{1 - (1 + i_m)^{-n+k}}{1 - (1 + i_m)^{-n}}.$$
(23)

La formula della rata di questo secondo piano, analogamente alla formula in eq. (22), è data da

$$R^* = D_k \cdot \frac{i'_m}{1 - (1 + i'_m)^{-p}}.$$

Se ora inseriamo nell'ultima formula quella dell'eq. (22), sostituendo D_k come nell'eq. (23), dopo qualche passaggio algebrico, si ha che

$$\frac{R^*}{R} = \frac{i'_m}{1 - (1 + i'_m)^{-72}} \cdot \frac{1 - (1 + i_m)^{-84}}{i_m}.$$

Inserendo i dati, si trova che

$$\frac{R^*}{R} \cong 1,0683,$$

quindi la nuova rata é superiore di circa il 7% alla vecchia.

Soluzione secondo quesito

L'equazione da impostare é la condizione di chiusura finanziaria, ossia

$$9843,75 = \frac{6000}{\sqrt{1+i}} + \frac{6000}{(1+i)}.$$

La suddetta equazione, con la sostituzione di variabile $v = 1/\sqrt{1+i}$, diventa di secondo grado, e l'unica soluzione finale accettabile é $i \cong 30,61\%$.

Soluzione terzo quesito

Si noti che $\exp(i) - 1 \cong 0.02020134 > i_1$, quindi siamo nella situazione in cui la retta del regime semplice interseca la curva del composto in corrispondenza di una sola epoca $t^* > 0$. Inoltre, se si calcola il montante relativo al capitale di un euro a regime semplice al sesto mese, ossia per t = 0.5, si trova $M_s(0.5) = 1 + 0.5 \cdot 0.02 = 1.01$, mentre se si fa lo stesso a regime composto a tasso $i_1 = 2.01\%$, si ha che $M_c(0.5) = (1 + 0.0201)^{0.5} = 1.01$, ossia t^* é esattamente 0.5, pertanto, per qualunque durata superiore ai sei mesi prevale sempre il regime composto.

Soluzione quarto quesito

Il montante fino al primo gennaio 2017 é

$$C(1+i_1t_1)\cdot(1+i)^2$$

ove $t_1 = 1/6$, mentre C é il capitale iniziale (dato che si rivelerá poi ininfluente). A questo punto, la banca si trattiene il 2% di tale somma, quindi rimane a maturare a regime semplice per cinque mesi solo il 98%. Il montante finale, all'uscita in data 01/06/2017, é dunque

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2)$$

ove $t_2 = 5/12$. L'equazione da impostare é alla fine

$$0.98 \cdot C(1+i_1t_1) \cdot (1+i)^2 \cdot (1+i_1t_2) = 1.02C.$$

Se dalla precedente formula si ricava i, si trova che

$$i = \sqrt{\frac{1,02}{0,98(1+i_1t_1)(1+i_1t_2)}} - 1 \cong 0,99\%.$$

Soluzione quinto quesito

Chiamando C il capitale versato sul conto corrente, dopo due mesi vi rimane

$$(1-\alpha)C\left(1+\frac{i}{6}\right)$$
.

Nei successivi due mesi, si capitalizza quella somma, poi le si toglie una percentuale pari ad α ossia rimane

$$(1-\alpha)\left((1-\alpha)C\left(1+\frac{i}{6}\right)\right)\left(1+\frac{i}{6}\right) = (1-\alpha)^2 \cdot C\left(1+\frac{i}{6}\right)^2.$$

Analogamente, nei successivi due mesi, quindi dopo sei mesi complessivi, la somma che rimane é

$$(1-\alpha)^3 \cdot C\left(1+\frac{i}{6}\right)^3$$
.

Il massimo α é quello in corrispondenza del quale la suddetta quantitá é uguale a *C*, ossia si deve risolvere l'equazione

$$(1 - \alpha_M)^3 \cdot C\left(1 + \frac{i}{6}\right)^3 = C$$

che ha come soluzione

$$\alpha_M = \frac{i/6}{1 + i/6}.$$

Inserendo i dati, si trova che α_M é pari circa a 2,28%.

Soluzione sesto quesito

Siccome il prezzo di acquisto A = 998 é inferiore al nominale N = 1000, scatta l'imposta da versare al momento dell'acquisto, ossia $\alpha(N-A)$, con $\alpha = 0,115$. Tenuto conto che si deve pagare anche una commissione fissa c alla banca che negozia il titolo, la somma finale complessiva da versare é $A + \alpha(N-A) + c$. Senza fare molti calcoli, é evidente che il rendimento diventa negativo se e solo se il nominale che ci verrá restituito alla scadenza (qualunque essa sia) é superiore alla somma effettivamente pagata all'acquisto, dunque l'equazione da impostare é

$$A + \alpha(N - A) + c = N,$$

da cui si ricava facilmente che

$$c = (N - A) \cdot (1 - \alpha) = 1,77.$$

Soluzione settimo quesito

Prima di tutto, bisogna determinare il rendimento di tale titolo, ossia il TIR. Il discounted cash-flow è dato da

$$G(x) = -1200 + \frac{548}{1+x} + \frac{728}{(1+x)^2}.$$

L'equazione algebrica G(x) = 0 è di secondo grado: se la risolvete nella variabile v = 1/(1+x), dopo qualche semplificazione algebrica, risulterá

$$182v^2 + 137v - 300 = 0.$$

Tale equazione ammette una sola soluzione accettabile, ossia positiva, e, se poi ritornate alla variabile originaria, troverete che $x^* = 4\%$. Pertanto la duration di tale titolo è

$$D = \frac{\frac{548}{1,04} + \frac{728 \cdot 2}{(1,04)^2}}{1200} \simeq 1,561,$$

ossia diciotto mesi (per difetto).

Soluzione ottavo quesito

a) Si noti, dalla sequenza degli indici, che é presente inflazione nei primi due semestri, ma non nel terzo.
 La formula piú generale che si puó applicare, qualunque sia l'andamento degli indici FOI semestre per semestre, è

$$\alpha_j = \frac{M_j}{M_{j-1}} - 1, \ j = 1, \dots, n,$$
(24)

ove gli indici M_j , per ogni j che va da 1 fino a n (si noti che, nel nostro caso, n = 4), sono calcolati ricorsivamente nel seguente modo:

$$\begin{cases} M_j = \max\{I_j, M_{j-1}\}, \ j = 1, \dots, n; \\ M_0 = I_0. \end{cases}$$

Nel nostro caso, si ha dunque che $M_0 = 103$, $M_1 = 103$, $M_2 = 103$, $M_2 = 103$, $M_3 = 103$, mentre $M_3 = M_2 = 103$, $M_4 = 103$, $M_5 = 103$, $M_6 = 103$, $M_7 = 103$, $M_8 = 10$

Tenete conto che le formule per calcolarsi la cedola c_j , il capitale rivalutato CR_j e la remunerazione semestrale RS_j sono le stesse sia in caso inflazione che di deflazione, ossia

$$\begin{cases} c_{j} = \frac{1}{2}iN(1+\alpha_{j}); \\ CR_{j} = \alpha_{j}N \ j = 1,2,3,4; \\ RS_{j} = c_{j} + CR_{j}, \ j = 1,2,3; \\ RS_{4} = c_{4} + CR_{4} + 1,004 \cdot N. \end{cases}$$
(25)

In particolare, si noti che RS_4 tiene conto del premio fedeltá, sotto l'ipotesi che il titolo sia portato a scadenza. Facendo tutti i calcoli e ricordandosi di approssimare i coefficienti α_j alla quinta cifra decimale, per j = 1, 2, 3, si ha che:

Epoche	α_j	CR_j	c_{j}	RS_j
1	0,00291	2,91	5,01	7,92
2	0,00194	1,94	5,01	6,95
3	0	0	5	5

Pertanto, il cash-flow dell'investimento, che denoteremo A, é dato da

$$a_0 = -1000$$
, $a_1 = 7,92$, $a_2 = 6,95$, $a_3 = 5$, $a_4 = 1009 + z$,

ove si noti che a_4 comprende una parte certa, ossia la restituzione del nominale piú il premio fedeltá e la cedola minima classica pari a 5 euro, e una parte incerta, legata alla eventuale rivalutazione del quarto semestre, denotata con l'incognita z, ancora non conosciuta, perché dipende dall'indice I_4 , che al momento non possiamo conoscere, perché uscirá solo a marzo 2017. Si noti comunque che siccome a_4 , qui sopra scritta come 1009 + z, altro non é che RS_4 come appare nell'eq. (25), si ricava facilmente che

$$z = 1005\alpha_4. \tag{26}$$

Il minimo rendimento possibile, detto r_m , si avrá ovviamente nel caso in cui anche nell'ultimo semestre non scatti il meccanismo di rivalutazione, in corrispondenza a $\alpha_4 = 0$, che comporta automaticamente z = 0 in base all'eq. (26). Pertanto, il *discounted cash-flow* del titolo nella peggiore prospettiva, denominato $G_{\min}(x)$, sarebbe

$$G_{\text{Min}}(x) = -1000 + \frac{7,92}{(1+x)^{\frac{1}{2}}} + \frac{6,95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009}{(1+x)^2}.$$

Considerate il fatto che non siete in grado di trovare la soluzione esatta, denotata appunto r_m , dell' equazione $G_{\min}(x)=0$, che vi fornirebbe la risposta cercata, perché algebricamente troppo complicata (anche passando attraverso una opportuna sostituzione di variabile, avreste una equazione algebrica di quarto grado). Allora, ricordando che $G_{\min}(x)$ è una funzione strettamente decrescente, tale che $G_{\min}(x)>0$ per $x< r_m$ e $G_{\min}(x)<0$ per $x>r_m$, dobbiamo "testare il segno" di $G_{\min}(x)$ "buttandovi dentro" valori ragionevoli di x, rammentando che r_m é sicuramente superiore al tasso cedolare, quantomeno per il premio finale, e tenendo conto che il meccanismo di rivalutazione semestrale é scattato in due semestri, quindi ha senso considerare valori abbastanza superiori a i, anche se non eccessivamente. Se ad esempio inserite $r_1=1,4\%$, risulterá $G_{\min}(r_1)\simeq 0,946>0$, mentre con $r_2=1,5\%$ risulterá $G_{\min}(r_2)\simeq -1,004<0$, pertanto $r_1< r_m< r_2$, con l'approssimazione richiesta.

b) Il discounted cash-flow del titolo é dato da

$$G(x) = -1000 + \frac{7,92}{(1+x)^{\frac{1}{2}}} + \frac{6,95}{(1+x)} + \frac{5}{(1+x)^{\frac{3}{2}}} + \frac{1009 + z}{(1+x)^2}.$$

Se desideriamo che il rendimento di tale titolo sia $r_3 = 1,8\%$ bisogna che r_3 sia il TIR di G(x), ossia l'unica soluzione appartenente a $]-1,+\infty[$ dell'equazione G(x)=0. Se inseriamo $r_3=0,018$ al posto di x ed eguagliamo a zero, si trova

$$z = 1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009.$$

Sfruttando poi l'eq. (26), ricaviamo direttamente che

$$\alpha_4 = \frac{1000(1,018)^2 - 7,92(1,018)^{3/2} - 6,95(1,018) - 5\sqrt{1,018} - 1009}{1005}. \tag{27}$$

Ricordandoci di calcolare α_4 con cinque cifre decimali, se é positivo, significa che nell'ultimo semestre é scattato il meccanismo di rivalutazione, quindi c'è stata inflazione per cui, in base alla formula data in eq. (24), l'indice I_4 si é alzato rispetto al valore massimo registrato fino al semestre precedente, ossia $I_4 > M_3 = 103,5$ e pertanto

$$I_4 = M_4 = (1 + \alpha_4) \cdot M_3 = (1 + \alpha_4) \cdot 103,5.$$
 (28)

Alla fine della procedura descritta, quindi, attraverso l'eq. (27), l'eq. (28) ci fornisce il valore dell'indice I_4 relativo al tasso r_3 . Se ripetiamo il tutto con $r_4 = 2\%$ al posto di r_3 , troveremo un altro corrispondente I_4 (ovviamente superiore al precedente): tali due valori di I_4 sono quelli richiesti. In particolare, in corrispondenza di r_3 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.00703$ e $I_4 = 104,23$, mentre in corrispondenza di r_4 , le eqs. (27) e (28) ci forniscono rispettivamente $\alpha_4 = 0.01105$ e $I_4 = 104,64$.

Soluzione quesito teorico

La scindibilitá di un fattore di montante significa che la funzione f(t) ad esso associata soddisfa la proprietá

$$f(x) \cdot f(y) = f(x+y)$$
 per ogni $x, y > 0$.

Nel nostro caso, si ha che

$$f(x) \cdot f(y) = (1+i)^{x-1} \cdot (1+i)^{y-1} = (1+i)^{x+y-2},$$

mentre

$$f(x+y) = (1+i)^{x+y-1} > (1+i)^{x+y-2},$$

quindi si verifica sempre che

$$f(x) \cdot f(y) < f(x+y).$$