ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017

1. Esercizi 2

REGIME DI SCONTO COMMERCIALE

Esercizio 1. Per quale durata una somma a scadenza S garantisce lo stesso valore attuale, adoperando indifferentemente il regime dello sconto semplice, a $tui\ i=5\%$, e quello dello sconto commerciale a $tus\ d=4\%$?

Soluzione. L'equazione da impostare è

$$S \cdot (1 - dt) = C \frac{1}{1 + it} \quad \Leftrightarrow \quad (1 - dt) \cdot (1 + it) = 1$$

da cui, dopo avere inserito i dati in d e i, otteniamo l'equazione

$$0,002t^2 - 0,01t = 0$$

che ammette un'unica soluzione accettabile, ossia t=5 anni.

Esercizio 2. Una somma S a scadenza tra 10 anni viene riscattata oggi nel regime dello sconto commerciale a tasso di sconto d=6% e immediatamente investita a regime semplice per la stessa durata. Quant'è il tasso minimo i^* di impiego affinché il montante non sia inferiore alla somma precedentemente riscattata?

Soluzione. Il montante ottenuto dall'investimento a regime semplice al tasso i^* per 10 anni del riscatto della somma S nel regime dello sconto commerciale a tasso di sconto d=6% è pari a

$$M = S \cdot (1 - dt) \cdot (1 + i^*t) = S \cdot (1 - 0.06 \cdot 10) \cdot (1 + 10i^*) = 0.4 \cdot (1 + 10i^*) S.$$

Poiché deve essere $M \geq S$, otteniamo

$$0, 4 \cdot (1 + 10i^*) S \ge S,$$

da cui, essendo S > 0, si ha

$$0, 4 \cdot (1 + 10i^*) \ge 1 \quad \Leftrightarrow \quad i^* \ge \frac{1 - 0, 4}{4} = 0, 15.$$

Quindi $i^* \ge 15\%$.

REGIMI ARBITRARI

Esercizio 3. Il valore di un bene che oggi vale $160 \in$ cresce linearmente nel tempo secondo la formula v(t) = 10t + 160. Detto A(t) l'attualizzazione dall'epoca t ad oggi del valore v(t) di quel bene, supposto che il regime per l'attualizzazione sia quello dello sconto commerciale a tasso di sconto d = 5%, determinare l'epoca t^* in corrispondenza alla quale il valore attuale $A(t^*)$ sia massimo.

Soluzione. L'attualizzazione nel regime di sconto commerciale è data da

$$A = C \cdot (1 - dt),$$

quindi nel nostro caso

$$A(t) = v(t) \cdot (1 - dt),$$

da cui, sostituendo v(t) = 10t + 160 e d = 0,05, si ottiene

$$A(t) = (10t + 160) \cdot (1 - 0,05t)$$

ossia

$$A(t) = -0.5t^2 + 2t + 160.$$

Possiamo procedere in due modi.

1) La funzione $A(t) = -0.5t^2 + 2t + 160$ ha come grafico una parabola con concavità rivolta verso il basso (il coefficiente di t^2 è -0.5 < 0), quindi l'epoca t^* in corrispondenza alla quale il valore attuale $A(t^*)$ è massimo coincide con l'ascissa del vertice della parabola, ossia

$$t^* = -\frac{b}{2a} = -\frac{2}{2 \cdot (-0,5)} = 2.$$

2) Calcoliamo la derivata prima della funzione A(t) ed otteniamo:

$$A'(t) = -t + 2.$$

Ponendo $A'(t) \geq 0$, ossia $-t+2 \geq 2$, da cui $t \leq 2$. Dunque la funzione A(t) è strettamente crescente per t < 2 e strettamente decrescente per t > 2, quindi t = 2 è un punto di massimo (assoluto) per la funzione A(t). Concludiamo che $t^* = 2$ è l'epoca in corrispondenza alla quale il valore attuale $A(t^*)$ è massimo.

RENDIMENTO DI UN B.O.T.

Esercizio 4. Supponendo di acquistare un B.O.T. di durata 18 mesi e valore nominale pari a 1200€ determinare:

- a) il rendimento (nel regime semplice), sapendo che l'investimento iniziale è 1000€;
- b) il rendimento netto nel caso che dobbiate pagare subito un'aliquota fiscale del 10% sul plusvalore tra nominale e prezzo di acquisto;

c) il rendimento netto nel caso che, oltre alla tassa cui ci si riferisce nel punto precedente, in seguito a mutamento della normativa fiscale, all'epoca finale il valore nominale incassato sia ulteriormente sottoposto ad aliquota del 5%.

Solutione.

a) Denotando l'investimento iniziale con A e il valore nominale corrisposto alla fine con N, si ha che:

$$N = A\left(1 + \frac{3}{2}r\right)$$

da cui si ricava

$$r = \frac{2}{3} \cdot \frac{N - A}{A} = \frac{2}{3} \cdot \frac{1200 - 1000}{1000} \approx 0,1333$$

dunque r = 13, 33%.

b) L'equazione base da cui ricavare r è ora

$$N = (A + 0, 1(N - A)) \cdot \left(1 + \frac{3}{2}r'\right),\,$$

perché, a causa dell'aliquota pagata al momento dell'acquisto, non investiamo più A, ma A+10%(N-A), dove N-A rappresenta il plusvalore originario.

Allora, abbiamo che

$$N = (A+0, 1(N-A)) \cdot \left(1 + \frac{3}{2}r'\right) = (0, 9A+0, 1N) \cdot \left(1 + \frac{3}{2}r'\right)$$

da cui si ricava:

$$r' = \frac{2}{3} \cdot \frac{0.9(N-A)}{0.9(N+0.1)} = \frac{2}{3} \cdot \frac{0.9 \cdot 200}{900+120} \approx 0.1176$$

dunque r' = 11,76%.

c) L'equazione base da cui ricavare r è ora

$$N - 0.05 N = (A + 0.1(0.95 N - A)) \cdot \left(1 + \frac{3}{2}r''\right),$$

dove l'unica differenza rispetto a prima è che, a scadenza di contratto, non incassiamo più il nominale N, ma il nominale decurtato di un 5%.

Allora, abbiamo che

$$0,95\,N = (A+0,1(0,95\,N-A))\cdot \left(1+\frac{3}{2}\,r''\right) = (0,9\,A+0,095N)\cdot \left(1+\frac{3}{2}\,r''\right)$$

da cui si ricava:

$$r'' = \frac{2}{3} \cdot \frac{0,855 N - 0,9 A}{0,9 A + 0,095 N} = \frac{2}{3} \cdot \frac{1026 - 900}{900 + 114} \approx 0,0828$$

dunque r'' = 8,28%.

Esercizio 5. A quale prezzo minimo deve essere venduto un B.O.T. a metá scadenza, per essere sicuri di ottenere un rendimento almeno pari a quello che si avrebbe avuto se si fosse portato a scadenza il titolo, supponendo come dati il prezzo di acquisto iniziale e il nominale?

Soluzione. Il rendimento r di un titolo a zero-coupon come il B.O.T., acquistato all'epoca $t_0 = 0$ al prezzo A e portato a scadenza T, di nominale N, é dato da

$$r = \frac{N - A}{AT}.$$

Se vendessimo il titolo a metá scadenza, ossia a t=T/2, ad un prezzo $V_{T/2}$, avremmo, secondo il regime semplice:

$$V_{T/2} = A \cdot \left(1 + r_0 \frac{T}{2}\right),$$

ove abbiamo indicato con r_0 il rendimento in caso di vendita. Il problema chiede per quali $V_{T/2}$ si abbia che $r_0 \geq r$, ossia, ricavando r_0 dalla precedente formula,

$$2 \cdot \frac{V_{T/2} - A}{AT} \ge \frac{N - A}{AT}.$$

Con un pó di semplice algebra, si giunge a

$$V_{T/2} \ge \frac{N-A}{2} + A,$$

ossia il prezzo minimo richiesto é $\frac{N-A}{2}+A.$

Esercizio 6. Supponiamo che voi vogliate acquistare un B.O.T. trimestrale di nominale N=1000. La tassazione vigente in Italia prevede che al momento dell'acquisto del titolo, il cui valore sia detto A>0, voi dobbiate pagare una imposta pari a

$$(1) \qquad \max\{\alpha(N-A), 0\},\$$

dove il coefficiente α é pari al 12,5%. Calcolare il rendimento netto r_n nei due casi: a) A=998 euro b) A=1000,15 euro.

Infine, supposto A < N, é possibile che r_n divenga negativo?

Soluzione. Caso (a) In tal caso, é facile vedere che $\alpha(N-A)=0, 25>0$, quindi l'imposta, come definita nella formula (1), é pari a 0,25 euro. Pertanto, la cifra pagata effettivamente é pari a $A+\alpha(N-A)=998,25$ euro. La formula che governa tale operazione di capitalizzazione é quindi data da:

$$N = (A + \alpha(N - A))\left(1 + \frac{r_n}{4}\right),\,$$

da cui, dopo qualche calcolo, si arriva a

$$r_n = 4 \cdot \frac{(N-A)(1-\alpha)}{A+\alpha(N-A)} \cong 0,70\%.$$

Caso (b) In tal caso, é facile vedere che $\alpha(N-A) < 0$, quindi l'imposta, come definita nella formula (1), é nulla. Pertanto, la cifra pagata effettivamente coincide con A e la formula che governa tale operazione di capitalizzazione é ora data da:

$$N = A\left(1 + \frac{r_n}{4}\right),$$

da cui

$$r_n = 4 \cdot \left(\frac{N}{A} - 1\right) \cong -0,06\%,$$

ossia ho un rendimento negativo.

Infine, se A < N, é facile vedere che $A + \alpha(N - A) < N$: infatti, dopo qualche passaggio algebrico, la precedente diseguaglianza corrisponde a $A(1-\alpha) < N(1-\alpha)$, ossia A < N che era l'ipotesi iniziale. Allora, se il nominale finale é sempre maggiore del prezzo iniziale (pur non comprensivo della ritenuta d'acconto), il rendimento non sará mai negativo.

RENDITE NEL REGIME COMPOSTO

Esercizio 7. Se prendete in affitto un appartamento con contratto di 4 anni e se il canone mensile, pagato all'inizio di ogni mese, è di $400 \in$, determinare il valore (attuale) A del contratto d'affitto complessivo, sapendo che il tasso annuo di riferimento, a regime composto, è i = 5%.

Se voleste pagare i canoni mensili alla fine di ogni mese, determinare il canone mensile R' equivalente, tenendo come riferimento del valore attuale quello trovato nel primo caso.

Soluzione. Si può vedere tale flusso di pagamenti come una rendita, ovviamente per il vostro padrone di casa, periodica, costante e anticipata di 48 termini. Quindi, il valore attuale complessivo è dato da

$$A = R \cdot \ddot{a}_{48 | i_m} = R \cdot a_{48 | i} \cdot (1 + i_m) = R \cdot \frac{1 - (1 + i_m)^{-48}}{i_m} \cdot (1 + i_m).$$

Tenendo conto del fatto che il tasso mensile è pari a

$$i_m = \sqrt[12]{1+i} - 1,$$

si ha che

$$A = R \cdot \frac{1 - (1+i)^{-4}}{\sqrt[12]{1+i} - 1} \cdot \sqrt[12]{1+i},$$

e, inserendo i dati, si ottiene

$$A \cong 17478, 10 \in$$
.

Nel secondo caso, il flusso di pagamenti si può vedere come una rendita (sempre per il vostro padrone di casa) periodica, a rata costante mensile, posticipata e costituita da 48 termini, quindi basta usare la formula classica, sempre con il tasso mensile:

$$A = R' \cdot \frac{1 - (1 + i_m)^{-48}}{i_m},$$

da cui, con la conversione del tasso data sopra, si trova

$$R' = A \cdot \frac{\sqrt[12]{1+i} - 1}{1 - (1+i)^{-4}} \cong 401,64 \in.$$

Esercizio 8. Un debito di 4800 \in è rimborsato in 2 rate costanti corrisposte rispettivamente dopo **uno** e **tre** anni. Determinare la rata R, nel regime composto, supponendo che i tassi siano $i_1 = 10\%$ nel primo anno e $i_2 = i_3 = 8\%$ nel secondo e nel terzo anno.

Soluzione. Poiché siamo nel regime composto a tassi variabili, abbiamo che

$$A = R \cdot (1+i_1)^{-1} + (R \cdot (1+i_2)^{-2}) \cdot (1+i_1)^{-1} = \frac{R}{1+i_1} + \frac{R}{(1+i_1) \cdot (1+i_2)^2}$$

da cui

$$R = A \cdot \frac{(1+i_1) \cdot (1+i_2)^2}{(1+i_2)^2 + 1} \cong 2842,78 \in.$$

Esercizio 9. Calcolare la rata, al tasso annuo del 6,25%, di una rendita di valore attuale $A=8202,09125 \in$ costituita da 8 rate annuali costanti posticipate la cui prima rata verrà pagata fra 5 anni.

Soluzione. Poiché la prima rata della rendita posticipata verrà pagata fra 5 anni, abbiamo rendita periodica, annuale, posticipata differita di m=4 periodi (attenzione: non 5 periodi), il cui valore attuale è pari a:

$$A = R \cdot a_{n \mid i} \cdot (1+i)^{-m} = R \cdot \frac{1 - (1+i)^{-n}}{i} \cdot (1+i)^{-m},$$

da cui si ricava

$$R = A \cdot \frac{i}{1 - (1+i)^{-n}} \cdot (1+i)^m = 8202,09125 \cdot \frac{0,0625}{1 - (1,0625)^{-8}} \cdot (1,0625)^4 \simeq 1700 \in.$$

Esercizio 10. Un bene viene venduto a rate al prezzo di 100000€. La rateazione è così descritta:

- i) anticipo immediato del 30% del valore del bene;
- ii) un numero n di rate costanti posticipate annuali pari a 8000 \in ;
- iii) tasso di interesse annuo, a regime composto, pari a i = 10%.

Stabilire:

- a) il numero n di anni necessario (per difetto);
- b) a quanto ammonta il residuo, ipotizzando di pagarlo nell'anno n + 1;

c) il motivo per cui, anche volendo abbassare la rata costante da 8000 a R, per un qualunque numero di anni, tale R non può scendere a 7000.

Soluzione. Abbiamo che il valore attuale della rendita è

$$S = 100000 - 0.3 \cdot 100000 = 70000 \in$$

a) Impostando l'equazione

$$S = R \cdot a_{n \mid i} = R \cdot \frac{1 - (1+i)^{-n}}{i}$$

con $S,\,i$ e R noti e n incognita, si ricava n attraverso il logaritmo, ossia

$$n = \frac{\ln\left(\frac{R}{R - S \cdot i}\right)}{\ln(1 + i)}$$

e si trova $n \cong 21, 82$.

Per semplicità, indichiamo ancora con n la parte intera (per difetto) di 21,82, dunque n=21.

b) Possiamo vedere il residuo riferito all'(n+1)–esimo anno in due modi equivalenti.

PRIMO MODO. Il residuo riferito all'(n + 1)-esimo anno è la differenza di due valori attuali S e S^* capitalizzata di n + 1 periodi:

$$\operatorname{Res}_{n+1} = (S - S^*) \cdot (1+i)^{n+1},$$

dove S è il valore attuale della rendita considerata, mentre S^* è il valore attuale di una rendita annua, posticipata, a rata costante R, costituita da n termini, ossia

$$S^* = R \cdot a_{n \mid i} = R \cdot \frac{1 - (1 + i)^{-n}}{i}.$$

Dunque

(2)
$$\operatorname{Res}_{n+1} = \left(S - R \cdot \frac{1 - (1+i)^{-n}}{i} \right) \cdot (1+i)^{n+1}.$$

SECONDO MODO. Il residuo riferito all'(n+1)-esimo anno è la differenza di due montanti M_1 e M_2 , riferiti all'epoca n, capitalizzata di un periodo:

$$\operatorname{Res}_{n+1} = (M_1 - M_2) \cdot (1+i).$$

Abbiamo che M_1 è il valore della rendita riferito all'epoca n, quindi

$$M_1 = S \cdot (1+i)^n,$$

mentre M_2 è l'incasso reale della rendita fino all'n-esimo anno, dunque è il montante di una rendita annua, posticipata, a rata costante R, costituita da n termini, ossia

$$M_2 = R \cdot s_{n \mid i} = R \cdot \frac{(1+i)^n - 1}{i}.$$

Allora

(3)
$$\operatorname{Res}_{n+1} = \left(S \cdot (1+i)^n - R \cdot \frac{(1+i)^n - 1}{i} \right) \cdot (1+i).$$

Osserviamo che le formule (2) e (3) sono uguali: infatti, se raccogliamo $(1+i)^n$ nel secondo membro di (3) otteniamo

$$\operatorname{Res}_{n+1} = \left(S \cdot (1+i)^n - R \cdot (1+i)^n \cdot \frac{1 - \frac{1}{(1+i)^n}}{i} \right) \cdot (1+i) =$$

$$= (1+i)^n \cdot \left(S - R \cdot \frac{1 - (1+i)^{-n}}{i} \right) \cdot (1+i) =$$

$$= \left(S - R \cdot \frac{1 - (1+i)^{-n}}{i} \right) \cdot (1+i)^{n+1}.$$

Nel nostro caso.

$$\operatorname{Res}_{22} = \left(S - R \cdot \frac{1 - (1+i)^{-21}}{i}\right) \cdot (1+i)^{22} =$$

$$= \left(70000 - 8000 \cdot \frac{1 - (1,1)^{-21}}{0,1}\right) \cdot (1,1)^{22} \cong 6597, 25 \in.$$

c) Abbiamo visto che

$$n = \frac{\ln\left(\frac{R}{R - S \cdot i}\right)}{\ln(1 + i)} = \frac{\ln R - \ln(R - S \cdot i)}{\ln(1 + i)}.$$

Poiché tutti i logaritmi devono essere ben definiti, essendo R > 0, 1 + i > 0, dobbiamo avere $R - S \cdot i > 0$, ossia R > 7000.

Esercizio 11. Godete di una rendita posticipata, immediata (che significa: non differita), che vi garantisce R_1 al primo anno e R_2 al secondo, con $R_1 \neq R_2$, a regime composto e tasso annuo i. Qual è la rata costante R che vi garantirebbe una rendita con valore attuale pari a quella con rate R_1 e R_2 ? (Problema letterale con formula finale che dipende dai dati R_1 , R_2 e i).

 $\boldsymbol{Soluzione}.$ Il valore attuale della rendita con rate R_1 e R_2 è pari a:

$$S_1 = R_1 \cdot (1+i)^{-1} + R_2 \cdot (1+i)^{-2} = \frac{R_1}{1+i} + \frac{R_2}{(1+i)^2} = \frac{R_1(1+i) + R_2}{(1+i)^2}.$$

Il valore attuale della rendita con rata costante R è :

$$S_2 = R \cdot (1+i)^{-1} + R \cdot (1+i)^{-2} = \frac{R}{1+i} + \frac{R}{(1+i)^2} = R \cdot \frac{2+i}{(1+i)^2}.$$

Poiché deve essere $S_2 = S_1$, allora

$$R \cdot \frac{2+i}{(1+i)^2} = \frac{R_1(1+i) + R_2}{(1+i)^2}$$

dunque

$$R = \frac{R_1(1+i) + R_2}{2+i}.$$

Esercizio 12. Un debito di 2000€ viene rimborsato con 6 rate semestrali. Le 2 rate del secondo anno sono doppie del primo e quelle del terzo triple del primo. Se le 2 rate del primo anno sono pari a R ciascuna e il tasso semestrale è $i_s = 4\%$, calcolare la rata R del primo anno.

Soluzione. Si tratta di tre rendite incollate tra loro a rata costante ciascuno, prima di rata R, poi 2R, infine 3R. Se il debito iniziale è A=2000, attualizzando le prime 2 rate si ha

(4)
$$A_1 = R \cdot \frac{1 - (1 + i_s)^{-2}}{i_s}.$$

Se ora calcolassi il valore attuale delle sole rate del secondo anno, ponendomi all'epoca t=1 (quindi qui attuale vuole dire riportato all'epoca t=1) posso continuare ad usare la stessa formula, ossia

(5)
$$2R \cdot \frac{1 - (1 + i_s)^{-2}}{i_s}.$$

Per portare poi questa somma dall'epoca t=1 all'epoca zero, si attualizza di nuovo (questa volta attuale significa veramente all'epoca zero) la (5) di 1 anno o di 2 semestri, ossia

(6)
$$A_2 = 2R \cdot \frac{1 - (1 + i_s)^{-2}}{i_s} \cdot (1 + i_s)^{-2}.$$

Ragionando allo stesso modo per il terzo anno, si trova che

(7)
$$A_3 = 3R \cdot \frac{1 - (1 + i_s)^{-2}}{i_s} \cdot (1 + i_s)^{-4}.$$

Infine, essendo $A = A_1 + A_2 + A_3$, tenendo conto della (4), (6), (7), si ha che

$$A = R \cdot \frac{1 - (1 + i_s)^{-2}}{i_s} \cdot \left(1 + \frac{2}{(1 + i_s)^2} + \frac{3}{(1 + i_s)^4}\right)$$

da cui, isolando e ricavando l'incognita R, si ha che

$$R = A \cdot \frac{i_s}{1 - (1 + i_s)^{-2}} \cdot \frac{(1 + i_s)^4}{(1 + i_s)^4 + 2(1 + i_s)^2 + 3} \simeq 195,88 \in.$$