
8.1.1 Come analizzare i dati: R Language
Insegnamento di Informatica

Elisabetta Ronchieri

Corso di Laurea di Economia, Universitá di Ferrara

I semestre, anno 2014-2015

Elisabetta Ronchieri (Universitá) Insegnamento di Informatica I semestre, anno 2014-2015

Argomenti

R Language
Control Structures
Functions
Debugging

1 / 20

Argomenti

R Language
Control Structures
Functions
Debugging

2 / 20

Control Structures

Control structures, supporting the control of flow of execution of
the program, are:

I if, else: testing a condition;

I for: execute a loop a fixed number of times;

I while: execute a loop while a condition is true;

I repeat: execute an infinite loop;

I break: break the execution of a loop;

I next: skip an interation of a loop;

I return: exit a function;

Most control structures are used when writing functions or longer
expresisons.

3 / 20

if

if(<condition>) {

do something

} else {

do something else

}

if(<condition1>) {

do something

} else if(<condition2>) {

do something different

} else {

do something different

}

The else clause is not necessary:

if(<condition3>) {

do something

} 4 / 20

if

Example:

> if(x > 3) {

+ y <- 10

+ } else {

+ y <- 0

+ }

> y <- if(x > 3) {

+ 10

+ } else {

+ 0

+ }

5 / 20

for

For loops take an iterator variable and assign it successive values
from a sequence or vector.
For loops are most commonly used for iterating over the elements
of an object such as list and vector.
This loop takes the i variable and in each iteration of the loop
gives it values 1, 2, 3, ..., 10, and then exits.

> for(i in 1:10) {

+ print(i)

+ }

6 / 20

for

Example: These loops have the same behavior.

> x <- c("a", "b", "c", "d")

> for(i in 1:4) {

+ print(x[i])

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

> for(i in 1:4) print(x[i])

7 / 20

for

The seq along() function returns an integer vector.
Example:

> x <- c("a", "b", "c", "d")

> for(i in seq_along(x)) {

+ print(x[i])

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

8 / 20

for

For loops can be nested, but be careful. Nesting beyond 2-3 levels
is often very difficult to read/understand.
The seq len() function returns an integer vector.

> x <- matrix(1:6, 2, 3)

> for(i in seq_len(nrow(x))) {

+ for(j in seq_len(ncol(x))) {

+ print(x[i, j])

+ }

+ }

[1] 1

[1] 3

[1] 5

[1] 2

[1] 4

[1] 6

9 / 20

while

While loops begin by testing a condition: if it is true, then they
execute the loop body.
Once the loop body is executed, the condition is tested again, and
so forth.

> count <- 0

> while(count < 10) {

+ print(count)

+ count <- count + 1

+ }

While loops can potentially result in infinite loops if not written
properly.

10 / 20

while

Sometimes there will be more than one condition in the test.
The runif function returns a random number between 5.0 and 7.5.

> z <- 5

> while (z >= 3 && z <= 10) {

+ print(z)

+ coin <- runif(1, 5.0, 7.5)

+ if (coin == 1) {

+ z <- z + 1

+ } else {

+ z <- z - 1

+ }

+ }

Conditions are always evaluated from left to right.

11 / 20

repeat

Repeat initiates an infinite loop: the only way to exit a repeat loop
is to call break.

> x0 <- 1

> tol <- 1e-8

> repeat {

+ x1 <- runif(1, 5.0, 7.5)

+ if(abs(x1 - x0) < tol) {

+ break

+ } else {

+ x0 <- x1

+ }

+ }

12 / 20

next

next is used to skip an iteration of a loop.

> for(i in 1:100) {

+ if(i <= 20) {

+ ## Skip the first 20 iterations

+ next

+ }

+ ## Do something here

+ }

13 / 20

Functions

Functions are created using the function() directive and are stored
as R objects just like anything else.
They are R objects of class function.

> f <- function(<arguments>) {

+ ## Do something interesting

+ }

Functions can be passed as arguments to other functions.
Functions can be nested, so that you can define a function inside
of another function
The return value of a function is the last expression in the function
body to be evaluated.

14 / 20

Arguments

I Functions have named arguments which potentially have
default values.

I Named arguments:
I are useful when you want to use the defaults.
I also help if you can remember the name of the argument and

not its position on the argument list.

I Function arguments can be:
I missing or might have default values;
I matched positionally or by name.

I The . . . argument indicates a variable number of arguments
that are usually passed on to other functions.

I . . . is often used when extending another function and you
don’t want to copy the entire argument list of the original
function

15 / 20

Defining a function

Example: b , c and d are named arguments.

> f <- function(a, b = 1, c = 2, d = NULL) {

+ print(a)

+ }

In addition to not specifying a default value, you can also set an
argument value to NULL.

16 / 20

Evaluation

Arguments to functions are evaluated lazily, so they are evaluated
only as needed.

> f <- function(a, b) {

+ a^2

+ }

> f(2)

4

This function never actually uses the argument b.

17 / 20

Evaluation

> f <- function(a, b) {

+ print(a)

+ print(b)

+ }

> f(40)

[1] 40

Error in print(b) : argument "b" is missing, with no

default

>

Notice that 40 got printed first before the error was triggered. This
is because b did not have to be evaluated until after print(a). Once
the function tried to evaluate print(b) it had to throw an error.

18 / 20

Debugging

Debugging indicates a problem through one of the following ways:

I message: a generic notification/diagnostic message produced
by the message function.

I warning: an indication that something is wrong but not
necessarily fatal.

I error: an indication that a fatal problem has occurred during
execution stops or produced by the stop function.

I condition: a generic concept for indicating that something
unexpected can occur.

19 / 20

Per ulteriori letture

W. N. Venables, D. M. Smith and the R Core Team, An
Introduction to R, July 2014,
http://cran.r-project.org/doc/manuals/R-intro.pdf

Vito M. R. Muggeo, Giancarlo Ferrara, Il Linguaggio R:
concetti introduttivi ed esempi, 2005, http:
//cran.r-project.org/doc/contrib/nozioniR.pdf

Josef Eschgfaller, Programmare in R, 2005, http://cran.
r-project.org/doc/contrib/Fondamenti-0405.pdf

20 / 20

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/nozioniR.pdf
http://cran.r-project.org/doc/contrib/nozioniR.pdf
http://cran.r-project.org/doc/contrib/Fondamenti-0405.pdf
http://cran.r-project.org/doc/contrib/Fondamenti-0405.pdf

	R Language
	Control Structures
	Functions
	Debugging

