1.2 Concetti base dell'Informatica: Informazione Insegnamento di Informatica

Elisabetta Ronchieri

Corso di Laurea di Economia, Universitá di Ferrara

I semestre, anno 2014-2015

Argomenti

Introduzione

Elaboratore

Rappresentazione

Regole di composizione

Notazioni

Notazione posizionale

Operazioni aritmetiche

Conversione di base

Argomenti

Introduzione

Elaboratore

Rappresentazione

Regole di composizione

Notazioni

Notazione posizionale Operazioni aritmetiche Conversione di base

L'elaboratore

- Manipola l'informazione tramite la sequenza di azioni (istruzioni) specificate dall'algoritmo.
- ► Rappresenta tutte le informazioni in modo numerico sia questa un numero o altra cosa.
- Utilizza la rappresentazione piú adatta per garantire un'esecuzione automatica delle istruzioni.
- ⇒ Impone delle regole di conversione tra la rappresentazione "umana" e quella propria dell'elaboratore.

La rappresentazione

- ▶ É il sistema che indica il contenuto dell'informazione.
- Usa una sequenza di simboli provenienti da un insieme finito detto alfabeto.

Esempio di alfabeto per la rappresentazione numerica¹:

- cifre numeriche da 0 a 9;
- separatore decimale ;;
- separatore delle migliaia .;
- ▶ segno positivo + e negativo −.

Esempio di alfabeto per la rappresentazione alfanumerica:

- caratteri dell'alfabeto (26 in tutto);
- cifre numeriche da 0 a 9;
- ▶ altri simboli (come ′, ?,!, +, −).

¹Adottato da International Organization for Standardization (ISO) per la definizione di norme tecniche.

Regole di composizione

- Sono associate ad ogni alfabeto per definire sequenze ben formate.
- Necessarie perché non tutte le sequenze di simboli identificano in modo corretto un dato:
 - ► 1.234, 5 Seq. CORRETTA;
 - ▶ 1,23,45 Seq. ERRATA.

Esempio di regola:

- é ammesso un solo separatore decimale (ossia ,) per i dati numerici;
- é ammesso un solo segno di punteggiatura (ossia .) in una frase in lingua italiana.

NOTA: uno stesso alfabeto puó dare luogo a interpretazioni diverse, come nel caso dei decimali e delle migliaia indicati rispettivamente dal . e dalla , nei paesi anglosassoni.²

²Convenzione adottata anche dai linguaggi di programmazione.

Argomenti

Introduzione

Elaboratore Rappresentazione Regole di composizione

Notazioni

Notazione posizionale Operazioni aritmetiche Conversione di base

Notazioni

- ► Esprimono il sistema adottato dalla rappresentazione.
- Sono di due tipi:
 - 1 Non posizionali caratterizzate da regole proprie che rendono complessa l'elaborazione.
 - 2 Posizionali che consentono una rappresentazione dei numeri compatta e una facile elaborazione.

Esempi di notazione

Non posizionale: numerazione romana.

- Ogni simbolo (quale *I*, *II* e
 X) corrisponde ad un valore.
- Il valore si ottiene sommando e/o sottraendo i valori dei simboli:
 - VII = 5 + 1 + 1 = 7;
 - LIX = 50 + (10 1) = 59.

Posizionale: numerazione decimale di origine araba.

- Ogni cifra (quale 1, 2 e 100) occupa una posizione, alla quale é associato un peso.
- ► La posizione prevede lo 0.
- Il valore si ottiene sommando i prodotti di ogni cifra per il peso associato:
 - $ightharpoonup 735 = 7 \cdot 100 + 3 \cdot 10 + 5 \cdot 1.$

Notazione posizionale

- Sfrutta il concetto di base b della rappresentazione.
- ► Rappresenta un numero come sequenza di simboli detti cifre c. Dette:
 - ▶ $S = \{0, 1, ..., b 1\}$ insieme finito di simboli (alfabeto).
 - ▶ la base b pari alla cardinalitá dell'alfabeto (b = |S|).
 - ▶ *n* il numero di cifre intere e *m* numero di cifre frazionarie.
 - c la cifra appartenente all'alfabeto S, ossia $c \in S$.
 - $ightharpoonup c_k$ la cifra c di posizione k-esima nella sequenza.
 - $ightharpoonup b^k$ il peso della cifra c di posizione k.

Notazione posizionale

 Ricava il valore v del numero avente n cifre intere e m frazionarie

$$C_{n-1}C_{n-2}...C_1C_0.C_{-1}...C_{-m}$$

dalla formula posizionale:

$$v = \sum_{k=-m}^{k=n-1} c_k \cdot b^k$$

- ▶ sommando ciascuna cifra c di posizione k-esima moltiplicata per il proprio peso b^k .
- Le posizioni si contano da destra a sinistra partendo da 0.
- ▶ Nel caso di numero intero, le posizioni partono da 0 (m = 0).

Rappresentazione posizionale del numero 12

$$v = \sum_{k=0}^{k=n-1} c_k \cdot b^k$$
, $n = 2$

Numero	Ь	Alfabeto	Formula	V
12	4	0, 1, 2, 3	$1 \times 4 + 2 \times 1$	sei
12	5	0, 1, 2, 3, 4	$1\times 5 + 2\times 1$	sette
12	8	$0,1,\ldots,7$	$1 \times 8 + 2 \times 1$	dieci
12	10	$0,1,\ldots,9$	$1 \times 10 + 2 \times 1$	dodici
12	16	$0,\ldots,9,A,\ldots,F$	$1\times 16 + 2\times 1$	diciotto

Osservazioni

- ► Una sequenza di cifre non é interpretabile se non si precisa la base in cui é espressa.
- Ogni numero é esprimibile in modo univoco in una qualunque base.
- ▶ Ogni numero é espresso da una sequenza precisa di cifre.
- ▶ Ogni simbolo rappresenta un valore tra 0 e b 1.

Osservazioni

► Con n cifre di interi nella base b é possibile rappresentare bⁿ diverse configurazioni.

Esempi:

- Se b = 10 e n = 3, $b^3 = 1000$ e gli interi vanno da 0 a 999.
- ► Se vogliamo 25 configurazioni diverse in base 10, servono almeno 2 cifre.

Codifica in base 10, 2, 5 e 16

10	2	5	16	10	2	5	16	10	2	5	16	
0	0	0	0	17	10001	32	11	34	100010	114	22	
1	1	1	1	18	10010	33	12	35	100011	120	23	
2	10	2	2	19	10011	34	13	36	100100	121	24	
3	11	3	3	20	10100	40	14	37	100101	122	25	
4	100	4	4	21	10101	41	15	38	100110	123	26	
5	101	10	5	22	10110	42	16	39	100111	124	27	
6	110	11	6	23	10111	43	17	40	101000	130	28	
7	111	12	7	24	11000	44	18	41	101001	131	29	
8	1000	13	8	25	11001	100	19	42	101010	132	2A	
9	1001	14	9	26	11010	101	1A	43	101011	133	2B	
10	1010	20	Α	27	11011	102	1B	44	101100	134	2C	
11	1011	21	В	28	11100	103	1C	45	101101	140	2D	
12	1100	22	C	29	11101	104	1D	46	101110	141	2E	
13	1101	23	D	30	11110	110	1E	47	101111	142	2F	
14	1110	24	Е	31	11111	111	1F	48	110000	143	30	
15	1111	30	F	32	100000	112	20	49	110001	144	31	
16	10000	31	10	33	100001	113	21	50	110010	200	32	

Osservazioni

▶ Il massimo numero rappresentabile M in base b con n cifre intere é $b^n - 1$.

$$M = \sum_{k=0}^{k=n-1} (b-1) \cdot b^{k} =$$

$$= (b-1)(b^{0} + b^{1} + \dots + b^{n-1}) =$$

$$= (b-1)(1 + b^{1} + \dots + b^{n-1}) =$$

$$= (b+b^{2} + \dots + b^{n}) - (1+b^{1} + \dots + b^{n-1}) =$$

$$= b^{n} - 1$$

Numero	b	n	Μ
$(1111)_2$	2	4	15
$(222)_3$	3	3	26
$(156)_{10}$	10	3	999

Osservazioni

► La stessa sequenza di simboli, cambiando base, puó avere significati diversi.

Numero	b	V
$(101)_2$	2	5
$(101)_5$	5	26
$(101)_{10}$	10	101

Operazioni aritmetiche

- ► Le operazioni, (quali somma, moltiplicazione e altre) sono invarianti rispetto ai cambiamenti di base.
- ► É usato il meccanismo di riporti e prestiti per l'operazione di somma e sottrazione.
- Gli algoritmi della moltiplicazione e divisione concettualmente sono i soliti. L'elaboratore puó richiedere che siano scomposte in operazioni piú semplici:
 - ▶ moltiplicazione realizzata come serie di somme.

Somma e sottrazione

+ b=5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	10
2	2	3	4	10	11
3	3	4	10	11	12
4	4	10	11	12	13

1 1

⊦ b=2	0	1
0	0	1
1	1	10

Moltiplicazione

2 3 4 x 4 2 =	x b=5
4 2 =	0
1 0 2 3+	1
2101-=	2
2 2 0 3 3	3
	4

x b=5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	11	13
3	0	3	11	14	22
4	0	4	13	22	31

	_		0		
0 10	0	0	1 0 -		
1 1	0	1	1	1	

x b=2	0	1
0	0	0
1	0	1

Divisione

234	4
14	32
1	
	'

x b=5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	11	13
3	0	3	11	14	22
4	0	4	13	22	31

1011	10
- 1	101
11	
1	

x b=2	0	1	
0	0	0	
1	0	1	

Esercizi sulle operazioni aritmetiche

- \triangleright (234)₅ : (4)₅ =?
- $(1011)_2:(10)_2=?$
- $A8F6)_{16} + (2C)_{16} = ?$
- $(AF6)_{16} \times (2C)_{16} = ?$
- ▶ 0F + 15 = ?

Errori nelle operazioni aritmetiche

- L'elaboratore puó generare degli errori durante il calcolo delle operazioni aritmentiche.
- É impossibile rappresentare tutti gli infiniti numeri.
- ▶ Il massimo numero rappresentabile con n cifre intere e b pari a 2 é $M = 2^n 1$ (vedere slide 15).
- ► É possibile avere un risultato completamente errato per overflow o straripamento:

$$5 + 4 = 9$$
 ($b = 10$, 1 cifra)

- $(5)_{10} = (101)_2; (4)_{10} = (100)_2;$
- $(9)_{10} = (101)_2 + (100)_2 = (1001)_2$ (b = 2, 4 cifre, errore di overflow).
- ▶ É possibile verificare la presenza di overflow quando sommando 2 numeri dello stesso segno, si ottiene altro numero di sengo opposto.
- ► Per evitare overflow bisogna usare un maggiore numero di cifre: non esiste soluzione alternativa.

Conversione da base b a base 10 per numeri interi

• É la naturale applicazione della formula posizionale v (vedere slide 10 con m=0).

Numero	b	Formula	V
$(101)_2$ $(10100)_2$	2	$\begin{array}{c} 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \\ 1 \times 2^4 + 1 \times 2^2 \ (20)_{10} \end{array}$	(5) ₁₀
$(721)_8$ $(12)_8$	8	$7 \times 8^2 + 2 \times 8^1 + 1 \times 8^0 \\ 1 \times 8^1 + 2 \times 8^0 (10)_{10}$	$(465)_{10}$
(12)8	0	1 × 0 + 2 × 0 (10)10	
(134) ₅	5	$1\times5^2+3\times5^1+4\times5^0$	$(44)_{10}$
$(7D1)_{16}$ $(31A)_{16}$	16 16	$7 \times 16^2 + 13 \times 16^1 + 1 \times 16^0 \\ 3 \times 16^2 + 1 \times 16^1 + 10 \times 16^0$	(2001) ₁₀ (794) ₁₀

Conversione da base 10 a base b per numeri interi

• É possibile usare la formula posizionale v (vedere slide 10 con m=0).

Numero	Ь	Formula	v
(283) ₁₀	10 5	$\begin{array}{c} 2\times10^2+8\times10^1+3\times10^0=\\ 2_5\times20_5^2+13_5\times20_5^1+3_5\times20_5^0 \end{array}$	(2113)5
(283) ₁₀	10 2	$2 \times 10^{2} + 8 \times 10^{1} + 3 \times 10^{0} = $ $(10)_{2} \times (1010^{10})_{2} + (1000)_{2} \times (1010^{1})_{2} + (11)_{2} \times (1010^{0})_{2}$	(100011011) ₂
(283) ₁₀	10 16	$2 \times 10^2 + 8 \times 10^1 + 3 \times 10^0 = 2_{16} \times A_{16}^2 + 8_{16} \times A_{16}^1 + 3_{16} \times A_{16}^0$	(11B) ₁₆

Conversione da base 10 a base b per numeri interi

- Un metodo usa l'algoritmo delle divisioni successive.
- ▶ Per convertire il valore v^3 in un numero di un'altra base b:
 - 1. Si divide *v* per *b*:

$$v = c_0 + c_1 \times b^1 + c_2 \times b^2 + \dots$$

- 2. Il resto *r* della divisione costituisce la cifra meno significativa (Least Significant Bit (LSB)):
 - $r = c_0$ dopo la prima iterazione.
- 3. Il quoziente *q* serve a iterare il procedimento:

$$q = c_1 + b \times (c_2 + b \times (c_3 + \ldots))$$
 dopo la prima iterazione.

- 4. Se $q \in 0$, l'algoritmo termina.
- 5. Se $q \ll 0$, diventa il nuovo valore v^* .
- 6. Si itera il procedimento con il valore di v^* .
- ▶ Le cifre del numero nella nuova base sono prodotte dalla meno significativa a quella piú significativa (Most Significant Bit (MSB)).

 $^{^{3}}$ Vedere slide 10 con m=0.

Conversione da base 10 a base b per numeri interi

V	b	Formula	Numero
quindici	4	$q = \frac{15}{4} = 3, r = 2$ $q = \frac{3}{4} = 0, r = 3$	32
undici	2	$q = \frac{11}{2} = 5, r = 1$ $q = \frac{5}{2} = 2, r = 1$ $q = \frac{2}{2} = 1, r = 0$ $q = \frac{1}{2} = 0, r = 1$	1011
sessantatre	10	$q = \frac{63}{10} = 6, r = 3$ $q = \frac{6}{10} = 0, r = 6$	63
sessantatre	16	$q = \frac{63}{16} = 3, r = 15$ $q = \frac{3}{16} = 0, r = 3$	3F

Esercizi sulla conversione di base

- ► Calcolare base 2 di (59)₁₀.
- ► Calcolare base 2 di (149)₁₀.
- ► Calcolare base 2 di (283)₁₀.
- ► Calcolare base 5 di (283)₁₀.
- ► Calcolare base 8 di $(77)_{10}$.
- ► Calcolare base 8 di (1211)₁₀.
- ► Calcolare base 8 di (283)₁₀.
- ► Calcolare base 16 di $(283)_{10}$.
- ► Calcolare base 16 di (283)₁₀.

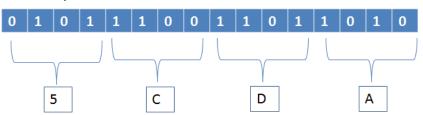
Relazione fondamentale tra basi

- ► La rappresentazione di un numero in due basi b₁ e b₂ é completamente diversa.
- ► Se le due basi sono una potenza dell'altra, le rappresentazioni di uno stesso numero sono strettamente correlate.
- Se $b_1 = b_2^n$:
 - ogni cifra nella rappresentazione R_1 corrisponde a n cifre nella rappresentazione R_2 ;
 - ogni cifra esadecimale $(16 = 2^4)$ corrisponde a 4 cifre binarie;
 - ogni cifra ottale $(8 = 2^3)$ corrisponde a 3 cifre binarie;
 - ▶ la conversione di un numero tra base b_1 e base b_2 o viceversa non necessita dell'algoritmo delle divisioni successive;
 - ▶ per la conversione basta sostituire ordinatamente ogni cifra di R_1 con gruppi di n cifre di R_2 .

Relazione fondamentale tra basi

Caso: $b_1 = 2$ e $b_2 = 16$.

- Consideriamo la conversione dalla base 2 alla base esadecimale.
- $b_2 = 16 = 2^4$.
- Le cifre della base 2 si raggruppano in gruppi di 4.
- Ad ogni gruppo si sostituisce la cifra esadecimale corrispondente.



Relazione fondamentale tra basi

Caso: $b_1 = 2 e b_2 = 8$.

- ▶ Consideriamo la conversione dalla base 2 alla base ottale.
- $b_2 = 8 = 2^3$.
- ▶ Le cifre della base 2 si raggruppano in gruppi di 3.
- ▶ Ad ogni gruppo si sostituisce la cifra ottale corrispondente.

```
(000\ 100\ 111\ 001)_2 = (0471)_8 \begin{array}{c} 000 & 0 \\ 001 & 1 \\ 010 & 2 \\ 011 & 3 \\ 100 & 4 \\ 101 & 5 \\ 110 & 6 \\ 111 & 7 \end{array}
```


Conversioni tra basi con $b_1 = b_2^n$ per numeri interi

b=2	b=2	b = 8	b=2	<i>b</i> = 16
1	1	1	1	1
10	10	2	10	2
11	11	3	11	3
100	100	4	100	4
101	101	5	101	5
1000	1 000	1 0	1000	8
1010	1 010	1 2	1010	Α
1111	1 111	1 7	1111	F
10000	10 000	2 0	1 0000	1 0
11111	11 111	3 7	1 1111	1 F
100000	100 000	4 0	10 0000	2 0
1100100	1 100 100	1 4 4	110 0100	6 4
11111111	11 111 111	277	1111 1111	FF

Conversione da base 10 a base b per numeri razionali

- ▶ Si consideri un numero razionale, espresso dalla seguente sequenza di cifre $c_{n-1}c_{n-2}\ldots c_1c_0.c_{-1}\ldots c_{-m}$.
- Si riprenda la formula posizionale: $\sum_{k=n-1}^{k=n-1} k^k$

$$v = \sum_{k=-m}^{k=n-1} c_k \cdot b^k$$

Si consideri la parte frazionaria del numero (ossia le cifre della sequenza a destra del punto):

$$w = c_{-1} \times b^{-1} + c_{-2} \times b^{-2} + \dots$$

► Si moltiplichino entrambi i membri per *b*:

$$w \times b = c_{-1} + c_{-2} \times b^{-1} + \ldots = c_{-1} + w_1$$

- ▶ c_{-1} é la parte intera del prodotto di $w \times b$.
- w₁ é la parte frazionaria.
- Applicando ricorsivamente la stessa procedura otteniamo la sequenza di cifre:

$$w \times b = c_{-1} + w_1$$

 $w_1 \times b = c_{-2} + w_2$

. . .

In caso di numero periodico, la sequenza potrebbe non finire.

Numero periodico

- Cambiando la base di rappresentazione un numero puó diventare periodico.
 - $(0.1)_{10}$ diventa periodico quando lo si converte in base 2.
- La rappresentazione in binario di un numero puó originare errori di approssimazione.

Esercizi di conversione di base

- ► Calcolare base 5 di (0.23)₁₀.
- ► Calcolare base 2 di $(0.23)_{10}$.
- ► Calcolare base 8 di (0.23)₁₀.
- ► Calcolare base 16 di (0.23)₁₀.
- ► Calcolare base 5 di $(0.15)_{10}$.
- ▶ Calcolare base 2 di $(0.75)_{10}$.

