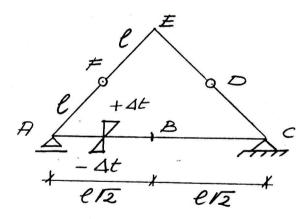

Cognome.....Nome.... Anno di Corso.....

1 Determinare con il Metodo degli Spostamenti le rotazioni dei nodi B e C:

$$\Phi_B = -0.2195 \frac{ql^3}{EI} \quad \Phi_C = -0.0801 \frac{ql^3}{EI}; \quad 2: \quad \Phi_B = 0.9023 \frac{ql^3}{EI} \quad \Phi_C = -0.2784 \frac{ql^3}{EI};$$

3:
$$\Phi_B = -1.1824 \frac{q l^3}{EI}$$
 $\Phi_C = 0.3248 \frac{q l^3}{EI}$; 4: $\Phi_B = -1.7624 \frac{q l^3}{EI}$ $\Phi_C = -0.8532 \frac{q l^3}{EI}$


Risolvere via P.L.V. la seguente struttura inserendo una cerniera in B:

$$X = \pm \frac{6EI\alpha\Delta t}{h(3+\sqrt{2})};$$

$$X = \pm \frac{6EI\alpha\Delta t}{h(3+\sqrt{2})};$$
 2: $X = \pm \frac{6EI\alpha\Delta t}{h(2+\sqrt{3})};$ 3: $X = \pm \frac{3EI\alpha\Delta t}{h(3+\sqrt{2})};$ 4: $X = \pm \frac{3EI\alpha\Delta t}{h(2+\sqrt{3})};$

3:
$$X = \pm \frac{3EI\alpha\Delta t}{h(3+\sqrt{2})}$$

4:
$$X = \pm \frac{3EI\alpha\Delta t}{h(2+\sqrt{3})}$$

Dato il seguente campo di spostamenti determinare l'angolo Φ_ξ che la direzione principale ξ della deformazione forma con l'asse di riferimento x nell'intorno del punto P=(2, -1, 0):

$$u = -3xy + 2y^2$$
 $v = -4y^2x + x^2$ $w = 5z^3$

2: -8.5687; 18.7852;

Verificare il risultato ottenuto con il procedimento grafico di Mohr.

- Enunciazione e dimostrazione del Teorema di reciprocità fra componenti di spostamento relative a punti appartenenti ad uno stesso intorno.
- 5 Significato meccanico delle componenti diagonali del tensore della deformazione.