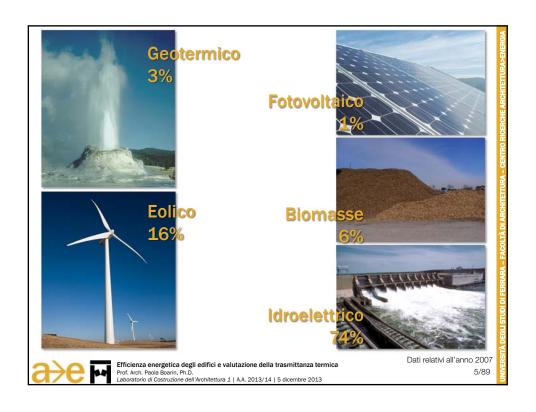
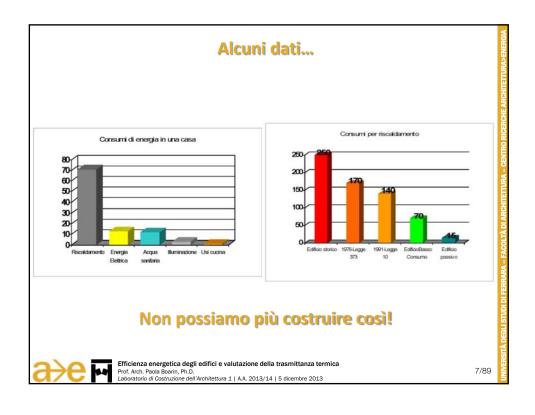


In occasione del Rio Earth Summit del 1992 è stata stipulata la "**Convezione Quadro delle Nazioni Unite sui Cambiamenti Climatici**", con l'obiettivo di "stabilizzare le concentrazioni nell'atmosfera dei gas ad effetto serra ad un livello tale da impedire pericolose interferenze di origine umana con il sistema climatico".


Per dare attuazione alla Convenzione, è stato redatto il **Protocollo di Kyoto** (1997), che impegna i Paesi industrializzati e quelli in economia di transizione, a ridurre le emissioni di gas serra, attraverso:

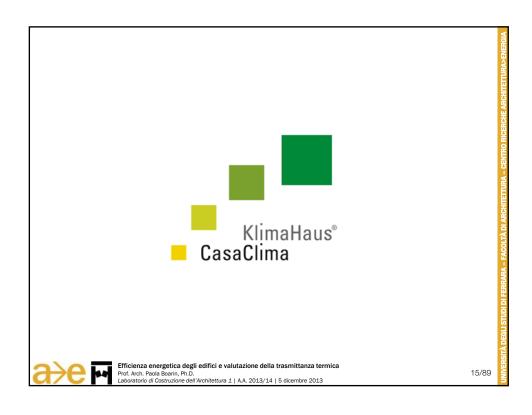
- la promozione dell'efficienza energetica
- I lo sviluppo di fonti rinnovabili di energia
- la protezione e l'estensione delle foreste
- la promozione dell'agricoltura sostenibile
- la limitazione e la riduzione della produzione di metano nelle discariche di rifiuti
 - misure fiscali appropriate per disincentivare le emissioni di gas serra.

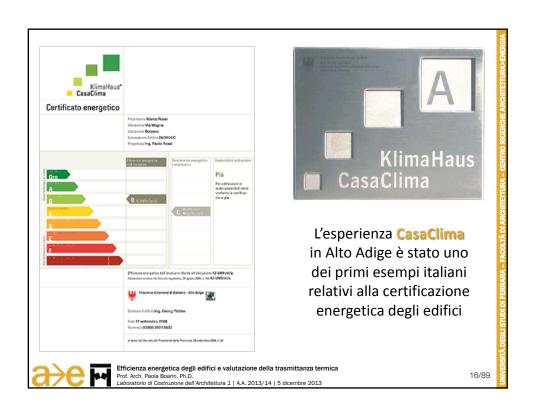


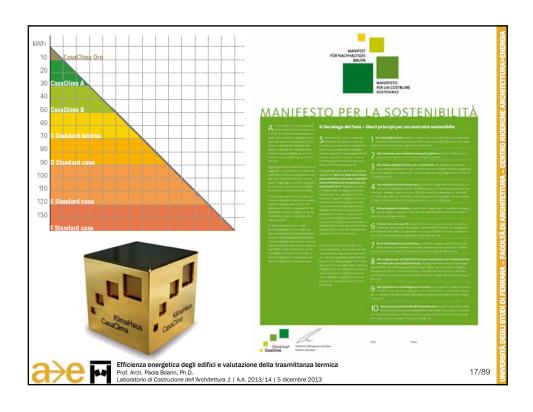
Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013



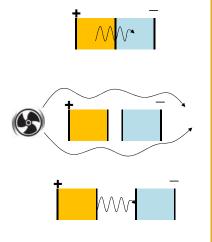
Leadership in Energy & Environmental Design




Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013



Quali sono le caratteristiche di un edificio ad alta efficienza energetica? La costruzione compatta L'elevato isolamento termico delle chiusure Gli infissi ad alta efficienza La struttura a tenuta d'aria L'assenza di ponti termici L'utilizzo attivo e passivo dell'energia solare L'ottimizzazione impiantistica I materiali

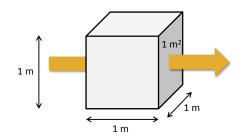

L'accurata esecuzione dei lavori

Trasmissione del calore

La trasmissione del calore avviene attraverso un corpo quando esso è sottoposto ad una differenza di temperatura. L'energia di sposta sempre dal corpo più caldo al corpo più freddo. La trasmissione di calore può avvenire per:

- Conduzione: trasferimento di calore che avviene attraverso un mezzo continui (solidi o fluidi in quiete) senza che in esso vi sia movimento macroscopico di materia (scambio di energia a livello atomico tra particelle contigue
- Convezione: trasferimento di calore tra le superfici interna ed esterna dell'involucro e l'aria che le lambisce. A contatto con le superfici solide, l'aria scambia calore, cambia temperatura (e, quindi, densità), generando movimenti ascensionali o discendenti che contribuiscono al trasferimento di calore (moto convettivo)
- Irraggiamento: trasferimento di calore per mezzo dell'emissione o dell'assorbimento di radiazioni infrarosse (è un fenomeno come la luce, le onde radio, i raggi X, ma su lunghezze d'onda diverse)

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013


21/89

Conducibilità termica λ [W/mK]

È la quantità di calore in Watt che passa attraverso uno strato di materiale di spessore pari a 1 m, di superficie pari a 1 m², quando la differenza calcolata nella direzione del flusso termico è di 1°K.

Esprime la capacità di un materiale di lasciarsi attraversare dal calore.

Più il valore è basso e più è alto il potere isolante del materiale.

 λ basso (0,002 < λ > 0,10)

 λ alto (0,11 < λ > 3,00)

Materiale ad alte prestazioni isolanti

Materiale a basse prestazioni isolanti

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

NORMA ITALIANA	Materiali e prodotti per edilizia Proprietà igrometriche Valori tabulati di progetto	UNI EN 12524
		SETTEMBRE 2001
	Building materials and products Hygrothermal properties Tabulated design values	
CLASSIFICAZIONE ICS	91.100.01; 91.120.10	
SOMMARIO	La norma fornisce valori di progetto sotto forma di tabelle per i calcoli di scambio termico e di vapore, per materiali e prodotti termicamente omoge- nei comunemente utilizzati nelle costruzioni edilizie. Essa fornisce inoltre valori che permettono il calcolo e la conversione di valori termici di progetto per diverse condizioni ambientalii.	norma Europe.
RELAZIONI NAZIONALI		
RELAZIONI INTERNAZIONALI	= EN 12524-2000 La presente norma è la versione ufficiale in lingua italiana della norma europea EN 12524 (edizione aprile 2000).	€ FUI
ORGANO COMPETENTE	CTI - Comitato Termotecnico Italiano	
RATIFICA	Presidente dell'UNI, delibera del 16 luglio 2001	
Efficienza ene	getica degli edifici e valutazione della trasmittanza termica	Ž

Gruppo di un materiale o applicazione	Massa volumica	Conduttività termica di progetto	Capacità termica specifica	Fattore di al vapore	
	ρ	λ	$C_{\rm p}$,	ı
	kg/m³	W/(m · K)	J/(kg - K)	campo	campo umido
Materie plastiche compatte					
Acrilico	1 050	0,20	1.500	10 000	10 000
Policarbonato	1 200	0,20	1 200	5 000	5 000
Politetrafluoroetilene (PTFE)	2 200	0,25	1 000	10 000	10 000
Policloruro di vinile (PVC)	1 390	0,17	900	50 000	50 000
Polimetilmetacrilato (PMMA)	1 180	0,18	1 500	50 000	50 000
Poliacetato	1 410	0,30	1 400	100 000	100 000
Poliammide (nylon)	1 150	0,25	1 600	50 000	50 000
Poliammide 6.6 con 25% di fibra di vetro	1 450	0,30	1 600	50 000	50 000
Polietilene/politene, alta massa volumica	980	0,50	1 800	100 000	100 000
Polietilene/politene, bassa massa volumica	920	0,33	2 200	100 000	100 000
Polistirene	1 050	0,16	1 300	100 000	100 000
Polipropilene	910	0,22	1 800	10 000	10 000
Polipropilene con 25% di fibra di vetro	1 200	0,25	1 800	10 000	10 000
Poliuretano (PU)	1 200	0,25	1 800	6 000	6 000
Resine epossidiche	1 200	0,20	1 400	10 000	10 000
Resine fenoliche	1 300	0,30	1 700	100 000	100 000
Resine poliestere	1 400	0,19	1 200	10 000	10 000

Gruppo di un materiale o applicazione	Massa volumica	Conduttività termica di progetto	Capacità termica specifica	Fattore di al vapore	resistenza e d'acqua
	ρ	λ	$C_{\rm p}$	/	1
	kg/m³	W/(m · K)	J/(kg - K)	campo secco	campo umido
Intonaci e rivestimenti					
Intonaco isolante di gesso	600	0,18	1 000	10	6
Intonaco di gesso	1 000	0,40	1 000	10	6
	1 300	0,57	1 000	10	6
Gesso e sabbia	1 600	0,80	1 000	10	6
Calce e sabbia	1 600	0,80	1 000	10	6
Cemento e sabbia	1 800	1,00	1 000	10	6
Тегга					
Creta o argilla	1 200 - 1 800	1,5	1 670 - 2 500	50	50
Sabbia e ghiaia	1 700 - 2 200	2.0	910 - 1 180	50	50

UNI 12524:2001

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | AA. 2013/14 | 5 dicembre 2013

25/89

Gruppo di un materiale o applicazione	Massa volumica	Conduttività termica di progetto	Capacità termica specifica	Fattore di al vapore	
	ρ	λ	G	/	и
	kg/m³	W/(m · K)	J/(kg · K)	campo secco	campo
Piastrelle (Altro)					_
Ceramica/porcellana	2 300	1,3	840		000
Plastica	1 000	0,20	1 000	10 000	10 00
Legname ^{c)}			1		
	500	0,13	1 600	50	20
	700	0,18	1 600	200	50
Pannelli a base di legno ^{c)}					
Compensato ^(f)	300	0,09	1 600	150	50
	500	0,13	1 600	200	70
	700	0,17	1 600	220	90
	1 000	0,24	1 600	250	110
Pannello truciolare con leganti in cemento	1 200	0,23	1 500	50	30
Pannello truciolare	300	0,10	1 700	50	10
	600	0,14	1 700	50	15
	900	0,18	1 700	50	20
Tavole a fibre orientate (OSB)	650	0,13	1 700	50	30
Pannelli di fibre, incluso MDF ^{e)}	250	0,07	1 700	5	2
	400	0,10	1 700	10	5
	600	0,14	1 700	20	12
	800	0,18	1 700	30	20
Efficienza energetica degli edil	fici e valutazione de	lla trasmittanza ter	mica	UNI 125	24:200

	Lambda	Densità
Pannelli da costruzione	(W/mK)	(kg/m³)
Cartongesso	0,21	900
P.IIi in fibre di legno porosi	0,06	200
semiduri	0,10	650
duri	0,15	1000
P.Ili in trucioli in legno con collante	0,16	700
mineralizzati	0,26	1250
P.Ili in legno compensato	0,44	600
P.IIi in fibrocemento	0,6	2000
P.Ili in lana di legno mineralizzato	0,093	400
P.IIi in terra cruda	0,14	500
P.IIi in canna	0,055	190
P.Ili in paglia	0,09	340
P.IIi in polistirene con cemento	0,07	140

Fonte: Agenzia CasaClima

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

27/89

Conducibilità termica di alcuni materiali isolanti

	Lambda	Densità
Materiali isolanti	(W/mK)	(kg/m³)
Cotone	0,04	20 - 40
Vermiculite espansa	0,07	90
Argilla espansa	0,09	350
Polietilene espanso in lastre	0,04	30
Polistirene espanso in lastre	0,04	20
Polistirene estruso in lastre	0,035	35
Materassino in lino	0,04	30
Lana di vetro	0,04	20
Canapa	0,045	25
Trucioli di legno	0,05	100
P.Ili extraporosi in fibra di legno (130)	0,04	130
P.Ili porosi in fibra di legno (190)	0,045	190
P.Ili porosi in fibra di legno con bitume	0,06	270
oppure latice		
P.Ili in lana di legno mineralizzati	0,093	400
P.Ili di calcio silicato	0,06	250

Fonte: Agenzia CasaClima

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

	Lambda	Densítà
Materiali isolanti	(W/mK)	(kg/m³)
	0.045	70
Fibra di cocco	0,045	70
Granuli di sughero	0,05	100
P.Ili di sughero espanso	0,045	110
P.IIi in fibre minerale	0,045	115
Perlite espansa	0,05	90
Poliuretano	0,03	30
Lana di pecora	0,04	25
Vetro cellulare (120)	0,041	120
Vetro cellulare (160)	0,050	160
Canneto	0,055	190
Lana di roccia	0,04	30
Paglia	0,09	340
Fiocchi di cellulosa	0,04	50
P.IIi di cellulosa	0,04	85

Fonte: Agenzia CasaClima

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

29/89

Conducibilità termica di alcuni materiali isolanti

	Lambda	Densità
Materiali isolanti sfusi	(W/mK)	(kg/m³)
Perlite espansa	0,05	90
Vermiculite espansa	0,07	90
Argilla espansa	0,09	350
Sughero granulare espanso	0,042	80-100
Sughero granulare naturale	0,05	100
Fiocchi di cellulosa	0,04	35
Polistirolo espanso sfuso	0,044	10
Lana minerale sfusa	0,044	15
Segatura di legno	0,1	200
Scorie da altoforno	0,35	750
Granulato di polistirene legato + cemento	0,08	fino a 350
Granulato di polistirene legato + cemento	0,06	fino a 125
Granulato di polistirene legato + cemento	0,05	fino a 125
Granuli di perlite espansa	0,042	80-100

Fonte: Agenzia CasaClima

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

	Lambda	Densità
Materia prima	(W/mK)	(kg/m³)
Acciaio	60	7800
Rame	380	8900
Alluminio	200	2800
Vetro	0,8	2500
Vetro acrilico (Plexiglas)	0,19	1180
Guaine di polietilene, bitume, ecc.	0,26	1700
Acciaio Ni-Cr inossidabile	13	7700
Legno di conifere – flusso di calore trasversale alla fibra	0,13	fino a 500
Legno di conifere – flusso di calore lungo la fibra	0,22	fino a 500
Legno di latifoglie	0,18	fino a 800

Fonte: Agenzia CasaClima

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

31/89

Conducibilità termica di alcuni materiali isolanti

	Lambda	Densità
Pavimentazione	(W/mK)	(kg/m3)
Massetto in cemento	1,4	2000
Massetto autolivellante a base anidride	1,1	2000
Massetto in asfalto	0,8	2200
Ceramica	1,2	2000
Legno duro	0,22	850
Quadretti di sughero	0,06	300

Fonte: Agenzia CasaClima

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

aboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

	Lambda	Densità
Intonaci e malte	(W/mK)	(kg/m3)
Intonaco in cemento	1,4	2200
Intonaco in calce-cemento	1	1800
Intonaco plastico per cappotto	0,9	1200
Intonaco in calce	0,8	1600
Intonaco di gesso (calce/gesso)	0,7	1500
Intonaco termoisolante con perlite, polistirolo < 250 kg/m3	0,09	fino a 250
Intonaco termoisolante con perlite, polistirolo, fino a 450 kg/m3	0,13	fino a 450
Malta di cemento	1,4	2200
Malta di calce/cemento	1	1800
Malta termoisolante < 800 kg/m3	0,28	800

Fonte: Agenzia CasaClima

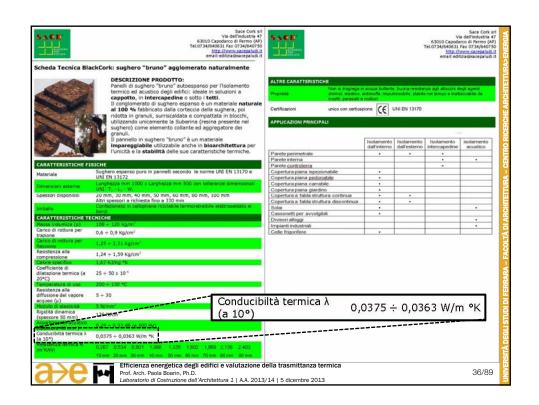
Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

33/89

Conducibilità termica di alcuni materiali isolanti

	Lamabala	Donoità
1	Lambda	Densità
Materiali da Muratura	(W/mK)	(kg/m3)
Disaski saa susilla saasusa	0.40	000
Blocchi con argilla espansa	0,18	800
Blocchi cavi con argilla espansa	0,22	650
Blocchi cavi con scorie da altoforno, tufo,	0,6	1500
ecc.		100
Blocchi cavi con lana di legno mineral.	0,45	fino a 1500
Blocchi cavi con lana di legno mineral. con	lt. Prüfb.	
isolante		
Mattone facciavista Klinker	1	1800
Mattone pieno	0,7	fino a 1600
Mattone forato	0,36	1200
Tramezza in laterizio	0,36	1100
Mattone forato porizzato	0,25	800
Mattone forato porizzato leggero murato	0,18	650
con malta isolante		
Blocco "cassero" in laterizio	0,55	fino a 1700
Muratura in pietra	2,3	fino a 2600

Fonte: Agenzia CasaClima


Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

	Lambda	Densítà
Materiali da Muratura	(W/mK)	(kg/m3)
Blocchi cellulari autoclavati	0,11	fino a 400
Blocchi cellulari autoclavati	0,14	fino a 500
Blocchi cellulari autoclavati	0,16	fino a 600
Blocchi cellulari autoclavati	0,24	fino a 800
Terra cruda tipo Pisè	1	fino a 2000
Terra cruda alleggerita	0,36	fino a 1200
Terra cruda alleggerita 600-800 kg	0,24	fino a 800
Cemento armato	2,3	2400
Calcestruzzo CLS	1,6	1800
CLS alleggerito con argilla esp.	0,45	1100
CLS alleggerito con argilla esp. > 1100 kg	0,7	fino a 1700
Solai con travetti e blocchi in lat. + caldana	(0,8)	1200-1600
Solai con travetti e blocchi cem. + caldana	(0,8)	1200-1600
Solai con travetti e blocchi in lat. por.	(0,67)	900-1200
Solai a pannelli cavi in c.a. 360kg/m²	(1,33)	1800
Solai a pannelli cavi in c.a. 280kg/m²	(1,0)	1400

Fonte: Agenzia CasaClima

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Conduttanza C [W/m²K]

La conduttanza termica indica la quantità di calore che attraversa, in 1 ora, 1 m² di un materiale dello spessore s quando il salto di temperatura tra le due facce è di 1 K. Un valore basso di λ è indice di un'alta conduttanza, mentre un valore alto indica una conduttanza ridotta.

$$C = \lambda / s$$

Resistenza termica R [m²K/W]

Descrive il valore della proprietà coibente di un materiale.

$$R = s / \lambda = 1/C$$

- Nel caso di sistemi edilizi comporti da più strati diversi, R è calcolata sommando i valori delle resistenze termiche dei singoli materiali.
- I valori della resistenza termica utilizzati nei calcoli intermedi, devono essere calcolati con almeno tre decimali.

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

37/89

Resistenza termica superficiale ($R_{si} - R_{se}$) [m²K/W]

È un fattore da **sommare** al calcolo della resistenza totale del componente edilizio. **Indica l'interazione tra la chiusura e gli scambi superficiali in relazione all'irraggiamento e alla convezione causata da movimenti di aria.** La resistenza superficiale è maggiore quando la superficie irradia poco e l'aria è calma.

Le resistenze termiche superficiali R_{si} (per interni) e R_{se} (per esterni) indicano i passaggi termici dall'aria ambientale alla superficie interna dell'elemento edile, nonché dalla superficie esterna dell'elemento edile all'aria esterna, in relazione alla direzione del flusso termico (ascendente, orizzontale o discendente).

	Parete a contatto con l'esterno		Parete a contatto con locale chiuso			
	Ascendente	Orizzontale	Discendente	Ascendente	Orizzontale	Discendente
R_{si}	0,10	0,13	0,17	0,10	0,13	0,17
R_{se}	0,04	0,04	0,04	0,10	0,13	0,17

I valori riportati sotto "orizzontale" si applicano a flussi termici inclinati fino a ± 30° sul piano orizzontale.

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

Trasmittanza termica U [W/m²K]

Rappresenta il flusso di calore che passa attraverso una elemento edilizio per m² di superficie della parete e per °K di differenza tra la temperatura interna ad un locale e la temperatura esterna o del locale contiguo.

La trasmittanza termica è legata alle caratteristiche del materiale che costituisce la struttura e alle condizioni di scambio termico liminare e si assume pari all'inverso della sommatoria delle resistenze termiche degli strati.

$$U = \frac{1}{R} = \frac{1}{R_{si} + R_1 + R_2 + ... + R_n + R_{se}}$$

- R_{si} e R_{se} sono le resistenze termiche superficiali interna ed esterna (m²K/W)
- R₁, R₂, R_n sono le resistenze termiche utili relative ai diversi strati della chiusura

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

39/89

Valori secondo normativa vigente (DLgs 311/2006 – Allegato C) per strutture opache verticali e orizzontali o inclinate

Il valore limite della trasmittanza termica delle chiusure opache (U) espressa in W/m²K, riferito alle varie tipologie di strutture ed alla zona climatica, è nel seguito indicato:

Tabella 2: U strutture verticali [W/m²K]			Tabella 3: U inclinate [W	strutture op //m²K]	ache orizzon	tali o	
Zona climatica	Dal 1/1/2006	Dal 1/1/2008	Dal 1/1/2010	Zona climatica	Dal 1/1/2006	Dal 1/1/2008	Dal 1/1/2010
А	0.85	0.72	0.62	А	0.80	0.42	0.38
В	0.64	0.54	0.48	В	0.60	0.42	0.38
С	0.57	0.46	0.40	С	0.55	0.42	0.38
D	0.50	0.40	0.36	D	0.46	0.35	0.32
Е	0.46	0.37	0.34	E	0.43	0.32	0.30
F	0.44	0.35	0.33	F	0.41	0.31	0.29

Trentino Alto Adige: zona F; Emilia Romagna: zona E; Puglia: zona C

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Valori secondo normativa vigente (DLgs 311/2006 – Allegato C) per strutture opache verticali e orizzontali o inclinate

Il valore limite della trasmittanza termica delle chiusure opache (U) espressa in W/m^2K , riferito alle varie tipologie di strutture ed alla zona climatica, è nel seguito indicato:

Tabella 3: U pavimenti verso locali non riscaldati o verso l'esterno [W/m²K]

verso resterno (w/m k)			
Zona climatica	Dal 1/1/2006	Dal 1/1/2008	Dal 1/1/2010
Α	0.80	0.74	0.65
В	0.60	0.55	0.49
С	0.55	0.49	0.42
D	0.46	0.41	0.36
E	0.43	0.38	0.34
F	0.41	0.36	0.33

Trentino Alto Adige: zona F; Emilia Romagna: zona E; Puglia: zona C

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Trasmittanza termica dei componenti di un edificio energeticamente efficiente

EDIFICIO UNIFAMILIARE	Casa Clima A Casa da 3 litri	CasaClima B Casa da 5 litri	Standard minimo Classe C
Pareti	0,1 - 0,2	0,15 - 0,25	0,25 - 0,4
Tetto	0,1 - 0,2	0,15 - 0,25	0,25 - 0,35
Solaio verso la cantina o aderente al suolo	0,2-0,3	0,25 - 0,35	0,4 - 0,6
Vetrata Ug	≤ 1,0	≤ 1,2	≤ 1,4
Finestra Uw	≤ 1,3	≤ 1,5	≤ 1,6
Ventilazione controllata con recupero del calore dall'aria di scarico	normalmente necessaria	non necessaria	non necessaria

Fonte: Agenzia CasaClima

Superficie lorda dei piani: 240 m² (netto 193 m²)

Volume lordo: 660 m³

Superficie delle finestre verso sud: 30 % della facciata Superficie delle finestre verso est/ovest: 20 % della facciata Superficie delle finestre verso nord: 10 % della facciata

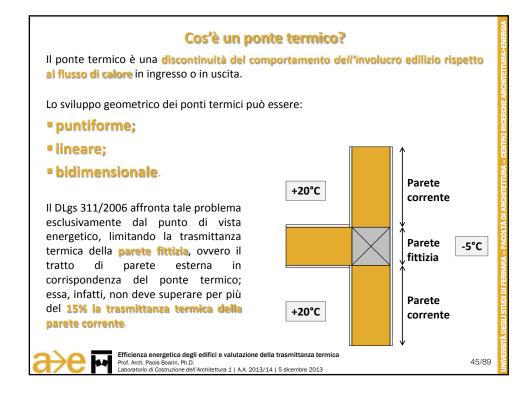
Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

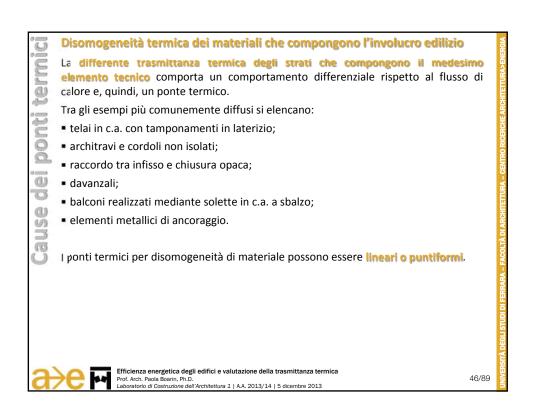
43/89

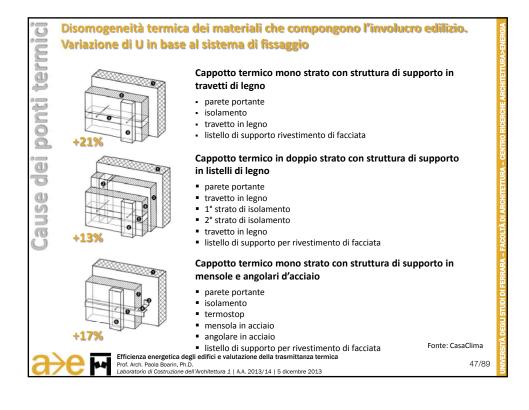
Trasmittanza termica dei componenti di un edificio energeticamente efficiente

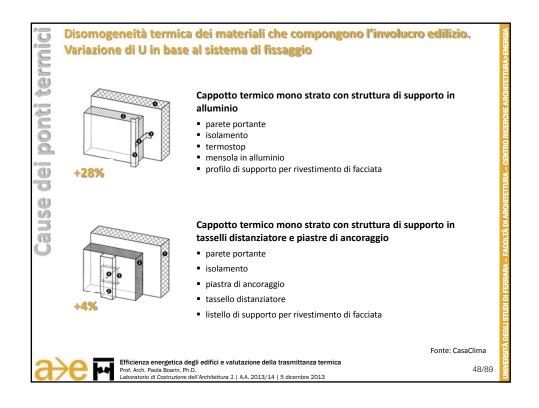
EDIFICIO PLURIFAMILIARE	CasaClima A Casa da 3 litri	CasaClima B Casa da 5 litri	Standard minimo Classe C
Pareti	0,15 - 0,25	0,2 - 0,3	0,3 - 0,45
Tetto	0,1 - 0,2	0,15 - 0,25	0,25 - 0,4
Solaio verso la cantina o aderente al suolo	0,25 - 0,35	0,3 - 0,5	0,5 - 0,7
Vetrata Ug	≤ 1,0	≤ 1,2	≤ 1,4
Finestra Uw	≤ 1,3	≤ 1,5	≤ 1,6
Ventilazione controllata con recupero del calore dall'aria di scarico	normalmente necessaria	non necessaria	non necessaria

Fonte: Agenzia CasaClima


Superficie lorda dei piani: 405 m² (netto 325)


Volume lordo: 1223 m³


Superficie delle finestre verso sud: 30 % della facciata Superficie delle finestre verso est/ovest: 20 % della facciata Superficie delle finestre verso nord: 10 % della facciata



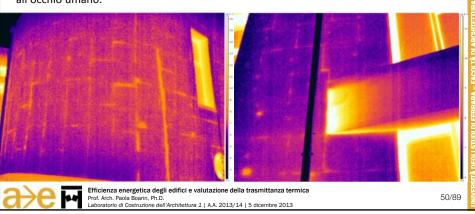
Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Conseguenze dei ponti termici

Oltre alle perdite di calore dovute alla riduzione della temperatura causata dalla discontinuità di comportamento dell'elemento tecnico, i ponti termici possono causare effetti alle strutture e incidere negativamente sulla qualità degli ambienti interni.

La formazione di fenomeni di **condensa superficiale** è tra le conseguenze più immediate della presenza di ponti termici.

Conseguenza diretta della presenza di acqua condensata è la crescita di colonie fungine (muffe) sulle superfici interne, coadiuvate dalla presenza di substrati favorevoli alla proliferazione.


Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio (Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

49/89

Valutazione dei ponti termici

La valutazione dei ponti termici è un momento molto delicato e che richiede particolare controllo da parte del progettista in tutti i momenti che costituiscono il processo edilizio.

L'indagine termografica, attraverso la visualizzazione della distribuzione della temperatura su una porzione di superficie, agevola l'interpretazione delle cause di continuità o discontinuità termica: infatti, le irregolarità nelle proprietà termiche dei componenti che costituiscono l'involucro edilizio possono, in determinate condizioni, tradursi in variazioni di temperatura superficiale che lo strumento rende apprezzabili all'occhio umano.

L'analisi termografica L'analisi termografica è un metodo di indagine qualitativa, non distruttiva, non a contatto basato sull'acquisizione, elaborazione e interpretazione di termogrammi (immagini all'infrarosso), utile alla valutazione di uniformità o discontinuità nel comportamento termico di una superficie radiante e quindi alla formulazione di ipotesi circa le cause di tale comportamento. Fonte: A. Papi, A. Pancaldi Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Bosini, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Accorgimenti per la protezione dai ponti termici

1 Separazione con giunti a taglio termico

adottando, ad esempio, balconi esterni separati dall'involucro edilizio, piuttosto che solette a sbalzo

Sovrapposizione degli elementi

finalizzata all'incremento delle prestazioni di quelli termicamente più deboli (ad esempio, sovrapporre il materiale isolante al telaio fisso dell'infisso, nei casi di isolamento a cappotto)

- Sovrapposizione degli strati isolanti

 per evitare soluzioni di continuità, quali fessure (ad esempio, nodo tra chiusura opaca e copertura, nodo tra chiusura opaca e solaio a terra, ecc.), privilegiando pannelli con battente e a strati sovrapposti e incrociati
- Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

53/89

Accorgimenti per la protezione dai ponti termici

- Ricorso a guarnizioni, nastri e materassini elastici per evitare fessure in corrispondenza delle congiunzioni degli elementi costruttivi
- Allineamento degli assi mediani di elementi tecnici o di strati isolanti con funzione coibente

che presentano differenti spessori (ad esempio, montaggio dell'infisso al centro dell'isolante della chiusura verticale)

- Utilizzo di materiali a bassa conduttività termica per gli elementi che perforano gli strati di isolante (ad esempio, utilizzo di tasselli termici per il fissaggio dell'isolamento)
- Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Accorgimenti per la protezione dai ponti termici

Provvedere il massimo prolungamento della sovrapposizione di materiale coibente

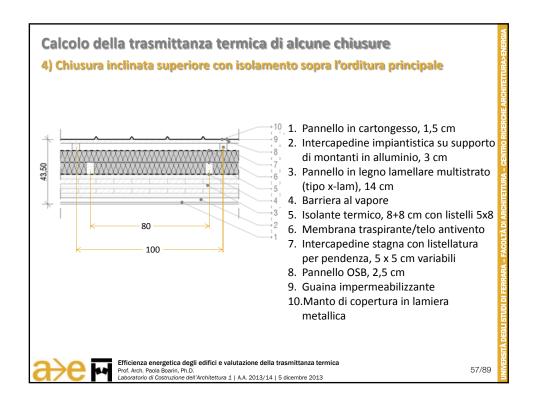
in corrispondenza del punto di interruzione, al fine di prolungare il percorso di fuoriuscita del calore, Qualora non fosse possibile mantenere continuità dell'isolante in tutto l'involucro esterno e sia necessario interromperlo per proseguire con l'isolamento dall'interno

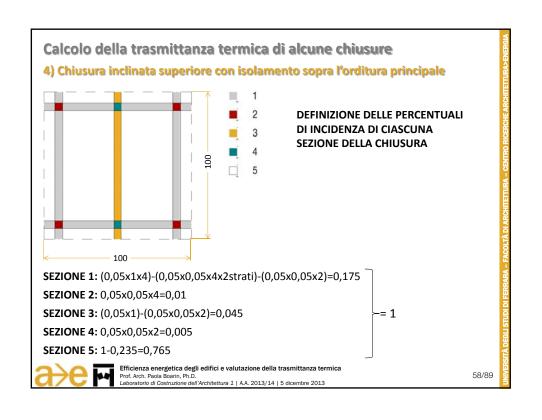
Evitare, se possibile, soluzioni morfologiche che prevedono l'impiego di angoli acuti

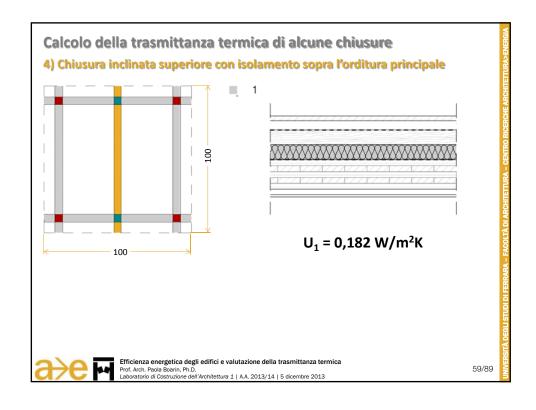
tra le chiusure verticali poiché essi sono particolarmente disperdenti

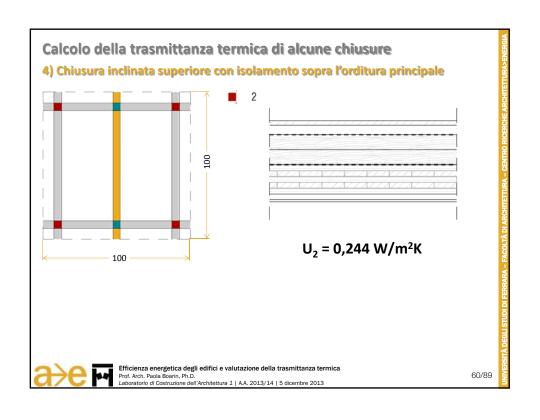
Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio (Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

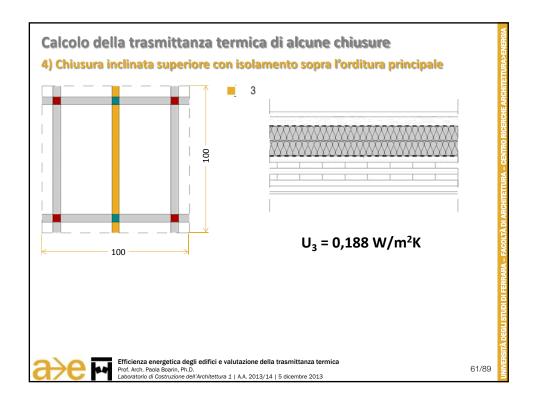
55/89

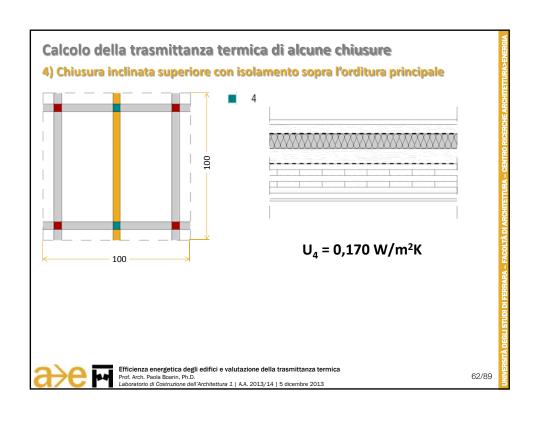

Calcolo della trasmittanza termica di chiusure opache

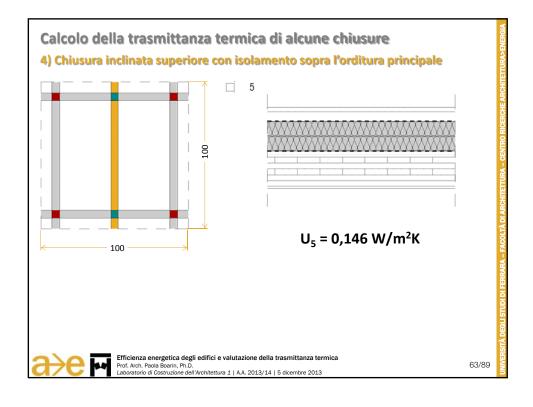

REGOLE GENERALI


- 1. Tutti gli **strati sottili** (freni/barriere al vapore, telo antivento, guaine impermeabilizzanti, ecc.) hanno spessori talmente irrisori da non modificare sostanzialmente la trasmittanza termica e, pertanto, non vanno considerati
- 2. Ogni volta che è presente un'intercapedine ventilata, il conteggio degli strati si ferma allo strato precedente all'intercapedine
- 3. Se nell'intercapedine c'è **aria ferma**, lo strato va conteggiato nel totale, con la relativa conducibilità termica
- 4. Ogni volta che ci sono delle **listellature** di compartimentazione dell'isolante, la trasmittanza finale della chiusura è pari alla media ponderata delle trasmittanze di tutte le sezioni con differente resistenza
- 5. Le **coperture a falda** vanno considerate nella sezione perpendicolare alla pendenza e non in proiezione orizzontale




Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

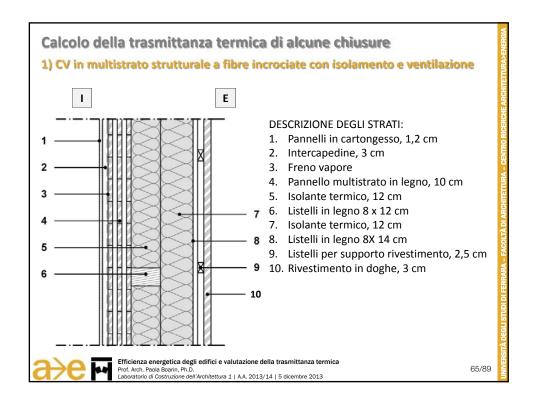


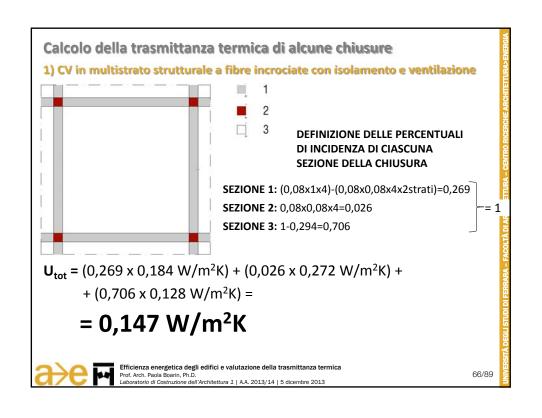


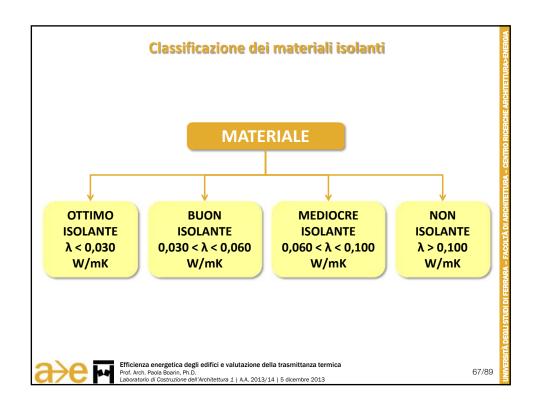
Calcolo della trasmittanza termica di alcune chiusure

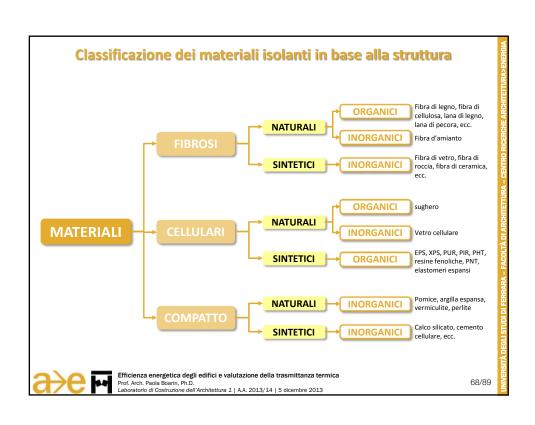
4) Chiusura inclinata superiore con isolamento sopra l'orditura principale

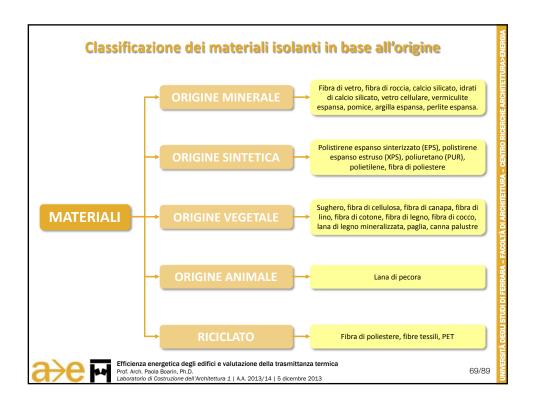
 $\mathbf{U}_{\text{tot}} = (0.175 \times 0.182 \text{ W/m}^2\text{K}) + (0.01 \times 0.244 \text{ W/m}^2\text{K}) +$


- $+ (0.045 \times 0.188 \text{ W/m}^2\text{K}) + (0.005 \times 0.170 \text{ W/m}^2\text{K}) +$
- $+ (0.765 \times 0.146 \text{ W/m}^2\text{K}) =$


 $= 0,155 W/m^2 K$




Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.


Prof. Arch. Paola Boarin, Ph.D.
Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Sotto la platea di fondazione	Granulato di vetro cellulare, vetro cellulare (densità appropriata), XPS ad alta resistenza meccanica
Pavimento di cantine o controterra Resistenza a compressione minima 500 kg/mq	Vetro cellulare (densità appropriata), XPS
Isolamento perimetrale (isolamento esterno pareti controterra delle cantine)	Granulato di vetro cellulare, pannelli di EPS idrofobizzato, XPS, vetro cellulare (densità appropriata)
Isolamento esterno facciate (sistemi a cappotto e facciate ventilate)	Pannelli XPS, EPS, sughero, idrati di silicato di calcio, fibre minerali, fibre di canapa, fibra di legno, vetro cellulare (densità appropriata)
Isolamento interno pareti senza barriera al vapore (valutare freno vapore)	Pannelli in calcio silicato, cellulosa, fibra di legno a diffusione aperta, pannelli in PUR rivestiti in alluminio, vetro cellulare (densità appropriata), XPS non aperti alla diffusione
Isolamento per pareti con sistema costruttivo a telaio	Pannelli o materassini in fibra di canapa, di lino, fibre minerali, fibra di legno, lana di pecora, fiocchi di cellulosa, granuli di sughero, perlite espansa

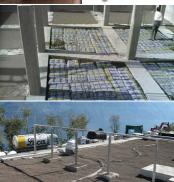
Solai intermedi: isolamento acust anticalpestio	Pannelli EPS, fibre minerali, fibra di canapa, fibra di lino, fibra di legno, sughero, lana di pecora, perlite espansa, fibra di cocco
Solai o tetti in travi di legno Isolamento non resistente a compressione tra puntoni	Feltri in fibra di lino, di canapa, fibre minerali, lana di pecora, fibra di legno, perlite espansa, granuli di sughero, fiocchi di cellulosa, fibre di canapa
Isolamento sopra i puntoni	EPS, fibre minerali ad alta resistenza, PUR, XPS, pannelli in fibra di legno, sughero, pannelli in fibra di canapa, vetro cellulare (densità appropriata)
Ultimo solaio	EPS, sughero, perlite espansa, fibre minerali pesanti, PUR, XPS, vetro cellulare, fibre di canapa, di legno, cellulosa
Partizioni interne, tetto piano e to verde	Perlite espansa, fibre minerali ad alta resistenza, PUR, vetro cellulare (densità appropriata), XPS
Efficienza energetica deg	ii edifici e valutazione della trasmittanza termica 72/8

Isolanti di origine minerale

ARGILLA ESPANSA

Presentazione: granuli sfusi

Materia prima: impasto di argilla e olio sottoposto ad elevate temperature


Proprietà: scarso potere termoisolante, buone capacità fonoassorbenti, ottima protezione estiva

Impiego: riempimento di intercapedini, alleggerimento di solai (miscelato con cls)

Conducibilità termica λ: 0,09 – 0,12 W/mK

Coefficiente di resistenza alla diffusione di vapore µ: 2-8

Costo medio: 50-250 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

73/89

Isolanti di origine minerale

SILICATO DI CALCE ESPANSO

Presentazione: pannelli

Materia prima: ossidi di calcio e di silicio con l'aggiunta di cellulosa (3-6%) per migliorare la flessibilità e la resistenza degli spigoli. I materiali vengono miscelati con acqua (silicato di calcio idrato) e versati in stampi, dunque trattati con vapore acqueo in autoclave ad alte temperature, fino ad ottenere una struttura aperta con pori fini (fino al 90%)

Proprietà: isolamento interno e risanamento da umidità e muffe. Deve essere trattato in superficie con materiali aperti alla diffusione dei vapore.

Conducibilità termica λ: 0,060-0,095 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 3-20

Costo medio: 350-450 €/mc

ficienza energetica degli edifici e valutazione della trasmittanza termica of. Arch. Paola Boarin, Ph.D. boratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Isolanti di origine minerale

CALCE CEMENTO CELLULARE

Presentazione: pannelli o granuli (derivanti dagli scarti di fabbricazione dei pannelli)

Materia prima: sabbia silicea, idrato di calce, cemento Portland, acqua, schiuma proteica e sostanze idrofobizzanti

Proprietà: buone proprietà termoisolanti, buona capacità di regolazione dell'umidità grazie all'elevata permeabilità al vapore. Non adatto come isolante acustico.

Impiego: isolamento a cappotto

Impiego: Conducibilità termica λ : 0,076 – 0,094 W/mK Coefficiente di resistenza alla diffusione di vapore μ : 15-20

Costo medio: 200-300 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | AA. 2013/14 | 5 dicembre 2013

75/89

Isolanti di origine minerale

FIBRE MINERALI (LANA DI VETRO, LANA DI ROCCIA)

Presentazione: pannelli, feltri, materassini, materiale sfuso

Materia prima (lana di vetro): sabbia di quarzo o vetro riciclato (45-49%), soda, dolomite, feldspato, calcare e resina sintetica (bakelite). Processo di fusione e centrifugazione.

Materia prima (lana di roccia): rocce basaltiche, resine sintetiche portate a fusione e idrofobizzazione con sostanze a base di silicone o oli minerali.

Proprietà: qualità isolanti molto buone, ma scarsa protezione estiva, ottimo isolamento acustico, non regola l'umidità.

Impiego: coperture (tra e sopra i travetti), solai intermedi, isolamento a cappotto e facciate ventilate, riempimento tra sistemi costruttivi a secco. Deve essere protetto dall'umidità e necessita generalmente di compartimentazione.

Conducibilità termica λ : 0,038-0,053 W/mK (vetro) | 0,037 – 0,054 W/mK (roccia)

Coefficiente di resistenza alla diffusione di vapore $\mu{:}\ 1\ (v{+}r)$

Efficienza energetica degli edifici e valutazione della trasmittanza termica (vetro) | 80-250 €/mc (roccia) Prof. Arch. Paola Boarin, Ph.D. 70. Laboratorio di Costruzione dell'Architettura 1 | AA. 2013/14 | 5 dicembre 2013

, 76/89

Isolanti di origine minerale

VETRO CELLULARE

Presentazione: pannelli, blocchi, granuli, elementi sagomati

Materia prima: sabbia quarzifera e vetro riciclato (fino a oltre il 60%) macinati e portati ad elevate temperature con aggiunta di carbonio che causa la formazione di gas e conferendo struttura alveolare.

Proprietà: buone proprietà termoisolanti e buona protezione estiva, completamente impermeabile all'acqua e al vapore. I pannelli hanno elevata resistenza meccanica a compressione, ma su superfici piane (altrimenti rischio rottura)

Impiego: in presenza di umidità, ovvero coperture, pareti contro terra, solai verso ambienti esterni.

Conducibilità termica λ: 0,055 – 0,066 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : ∞

Costo medio: 300-500 €/mc (pannelli) | 80-150 €/mc (granulato sfuso)

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

77/89

Isolanti di origine minerale

PERLITE ESPANSA

Presentazione: granuli sfusi, pannelli

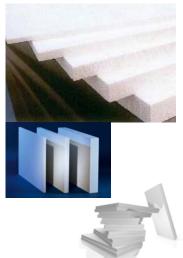
Materia prima: sabbia quarzosa e/o vetro riciclato (fino a oltre il 60%) portati ad elevate temperature.

Proprietà: Buona permeabilità al vapore, anche se i singoli granuli sono completamente impermeabili. E' un materiale con buone proprietà termoisolanti e fonoassorbenti, è incombustibile e non emette fumi tossici in caso di incendio, non contiene sostanze nocive per la salute, è inerte, stabile nel tempo, inattaccabile da parassiti.

Impiego: riempimento di intercapedini, coperture, sottotetti non praticabili, impastata con calce idraulica è impiegata per la realizzazione di sottofondi e massetti in solai interpiano o controterra, coperture piane e a falda. A granulometria per la realizzazione di intonaci termoisolanti, fonoassorbenti e resistenti al fuoco.

Conducibilità termica λ: 0,045-0,070 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 1-5


Costo medio: 100-250 €/mc

a>e ⊷

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Isolanti di origine sintetica

POLISTIRENE ESPANSO SINTERIZZATO (EPS)

Presentazione: pannelli, perle sciolte, elementi sagomati

Materia prima: polimerizzazione dello stirene, ottenuto da benzolo ed etilene, ricavati da petrolio e metano. È possibile aggiungere polvere di alluminio o graffite per migliorare le proprietà termiche (EPS grigio).

Proprietà: da buone a ottime proprietà termoisolanti, scarsa protezione estiva, nessuna capacità di regolazione dell'umidità, buone proprietà di isolamento acustico da calpestio ma non da trasmissione aerea.

Impiego: coperture, solai a terra e interpiano (anche come supporto di sistemi radianti a pavimento), sistemi a cappotto.

Conducibilità termica λ: 0,040 – 0,056 W/mK

Coefficiente di resistenza alla diffusione di vapore μ: 21-107 Costo medio: 50-250 €/mc

20310 IIICAID! 30 230 C/!

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio (Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

79/89

Isolanti di origine sintetica

POLISTIRENE ESPANSO ESTRUSO (XPS)

Presentazione: pannelli con o senza «pelle» (addensamento superficiale compatto), da solo o accoppiato con altri materiali

Materia prima: polimerizzazione dello stirene, ottenuto da benzolo ed etilene, ricavati da petrolio e metano. Il propellente più utilizzato per l'espansione del polistirolo liquido è la CO₂.

Proprietà: proprietà termoisolanti molto buone, scarsa protezione estiva, nessuna capacità di regolazione dell'umidità, buone proprietà di isolamento acustico da calpestio ma non da trasmissione aerea.

Impiego: principalmente negli attacchi a terra e negli ambienti umidi particolarmente sollecitati ai carichi (coperture praticabili, a verde).

Conducibilità termica λ: 0,034 – 0,041 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 87-321

Costo medio: 150-250 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Isolanti di origine sintetica

POLIURETANO (PUR)

Presentazione: pannelli, schiume ad espansione in situ, elementi presagomati

Materia prima: polimerizzazione dello stirene, ottenuto da benzolo ed etilene, ricavati da petrolio e metano. Il propellente più utilizzato per l'espansione del polistirolo liquido è la ${\rm CO}_2$.

Proprietà: proprietà termoisolanti molto buone, scarsa protezione estiva, nessuna capacità di regolazione dell'umidità, buone proprietà di isolamento acustico da calpestio.

Impiego: copertura, come isolamento anticalpestio nei solai intermedi, isolamento di condotte impiantistiche.

Conducibilità termica λ: 0,032-0,034 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 60

Costo medio: 200-300 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | AA. 2013/14 | 5 dicembre 2013

81/89

Isolanti di origine vegetale

FIBRA DI CANAPA

Presentazione: feltri, pannelli, fibre sfuse

Materia prima: prodotto vegetale della canapa, trattato con soda o sali di boro per aumentare le proprietà antincendio e talvolta rinforzato con fibre di poliestere.

Proprietà: buone proprietà termoisolanti, buona protezione termica estiva, buona capacità di regolare l'umidità (riesce ad assorbire umidità fino a un terzo del suo peso senza perdere le proprietà isolanti), buon isolamento acustico. È un materiale rinnovabile e riutilizzabile.

Impiego: in copertura come isolamento tra travetti, in parete nei sistemi di isolamento a cappotto (posato in più strati tra montanti) e nelle chiusure stratificate a secco. Nei solai intermedi vengono utilizzati i feltri anticalpestio. Può essere impiegato al posto delle schiume per il riempimento delle cavità.

Conducibilità termica λ: 0,040 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 1-5

Costo medio: 150-300 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Isolanti di origine vegetale

FIBRA DI CELLULOSA

Presentazione: pannelli, fiocchi sfusi

Materia prima: carta da giornale riciclata arricchita con sali di boro per la protezione antincendio e con additivi per la protezione dai roditori. Possono essere impiegate fibre di juta per il rinforzo dei pannelli.

Proprietà: buone proprietà termoisolanti, buona protezione termica estiva, buona capacità di regolare l'umidità, molto buone proprietà di isolamento e assorbimento acustico. Se in fiocchi, è un materiale rinnovabile e riutilizzabile.

Impiego (fiocchi sfusi): per insufflazione nelle intercapedini di solai e chiusure verticali.

Impiego (pannelli): isolamento tra travetti o come isolamento anticalpestio.

Conducibilità termica λ: 0,045-0,058 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 1-3

Costo medio: 100-350 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | AA. 2013/14 | 5 dicembre 2013

83/89

Isolanti di origine vegetale

FIBRA DI COCCO

Presentazione: feltri, materassini, pannelli

Materia prima: rafia delle noci di cocco, sali di boro e solfato di ammonio per renderla ignifuga.

Proprietà: proprietà termoisolanti da medie a buone, buona capacità di regolare l'umidità, ottimo isolante acustico anticalpestio. Materia prima disponibile, ma pregiata, lunghi tragitti per il trasporto (valutazione LCA). È riciclabile.

Impiego: isolamento tra travetti, tra telai in legno o come isolamento anticalpestio.

Conducibilità termica λ: 0,043 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 1

Efficienza energetica degli edifici e valutazione della trasmittanza termica
Prof. Arch. Paola Boarin, Ph.D.
Laboratorio di Costruzione dell'Architettura 1 | AA. 2013/14 | 5 dicembre 2013

FIBRA DI LEGNO

Presentazione: pannelli

Materia prima: residui della lavorazione del legno di conifere e latifoglie, senza o con aggiunta di lattice, paraffina, bitume, cera naturale per rendere i pannelli resistenti all'umidità.

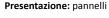
Proprietà: buone proprietà termoisolanti, ottima protezione dal calore estivo, buone capacità di regolazione dell'umidità, buon isolamento acustico, anche d a calpestio. Risorsa sufficientemente disponibile, rigenerabile, può essere riciclato come combustibile.

Impiego: isolamento tra e sopra i travetti di copertura. Isolamento in pannelli anticalpestio nei solai. Pannelli per isolamento a cappotto e facciate ventilate. Buono anche per l'isolamento dall'interno.

Conducibilità termica λ: 0,040-0,55 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 2-5

Costo medio: 150-300 €/mc


Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | AA. 2013/14 | 5 dicembre 2013

85/89

Isolanti di origine vegetale

LANA DI LEGNO MINERALIZZATA

Materia prima: fibre di abete mineralizzate rivestite da un legante minerale: il cemento Portland. Le fibre vengono sottoposte ad un trattamento mineralizzante che rende le fibre perfettamente inerti e ne aumenta la resistenza al fuoco

Proprietà: la struttura cellulare del legno conferisce al pannello isolamento, leggerezza, elasticità. Gli interstizi fra le fibre sono responsabili dell'assorbimento acustico e dell'ottimo aggrappaggio a tutte le malte.

Impiego: isolamento dai ponti termici di elementi in c.a. (usato come cassero per getti), architravi, cordoli solai, nicchie radiatori. Nelle chiusure verticali per isolamento a cappotto e per isolamento in intercapedine per protezione acustica. Nei solai per protezione acustica.

Conducibilità termica λ: 0,085-0,091 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 3-50 (solo lana di legno 5)

Costo medio: 200-550€/mc Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D.

Isolanti di origine vegetale

FIBRA DI LINO

Presentazione: pannelli, feltri, fibre sfuse

Materia prima: prodotto vegetale dal lino, trattato con boro o sali di ammonio per la resistenza al fuoco e agli insetti. Può presentare fibre di poliestere come rinforzo.

Proprietà: buone proprietà termoisolanti, media protezione dal caldo estivo, buone capacità di regolazione dell'umidità. Materia prima rinnovabile.

Impiego: isolamento di coperture e di chiusure stratificate a secco. Nei solai sono impiegati feltri anticalpestio; utilizzato in intercapedini come riempitivo al posto delle schiume.

Conducibilità termica λ: 0,040 W/mK

Coefficiente di resistenza alla diffusione di vapore µ: 1

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Baorin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

87/89

Isolanti di origine vegetale

SUGHERO

Presentazione: granulato sfuso, pannelli di agglomerato espanso

Materia prima: corteccia della quercia da sughero (Francia del Sud, Spagna, Portogallo, Africa del Nord) frantumata e sottoposta a cottura senza l'aggiunta di alcuna sostanza. Materia prima limitata e pregiata. Nella fase di cottura possono svilupparsi sostanze pericolose per la salute. Tragitti abbastanza lungi per il trasporto (valutazione LCA). Può avere un odore molto forte.

Proprietà: buone proprietà termoisolanti e capacità di protezione dal caldo estivo, buona capacità di regolazione dell'umidità, buone capacità di isolamento acustico.

Impiego: il granulato viene impiegato come riempimento di intercapedini. Isolamento a cappotto o parete ventilata. Coperture ventilate. Pannelli anticalpestio.

Conducibilità termica λ: 0,043-0,052 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 9-19

Costo medio: 200-450 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

Isolanti di origine animale

LANA DI PECORA

Presentazione: feltri, fiocchi

Materia prima: lana di pecora, urea e derivati e sali di boro come trattamento antincendio e antitarma. Prodotto naturale sufficientemente disponibile.

Proprietà: buone proprietà termoisolanti, protezione termica estiva media, buona capacità di regolazione dell'umidità, buon isolamento acustico anche anticalpestio.

Impiego: in copertura è impiegato sotto forma di materassini tra travetti. In chiusura verticale come riempitivo in strutture stratificate a secco. Isolamento anticalpestio e in intercapedine tra le tubature.

Conducibilità termica λ: 0,035-0,040 W/mK

Coefficiente di resistenza alla diffusione di vapore μ : 1-5

Costo medio: 150-250 €/mc

Efficienza energetica degli edifici e valutazione della trasmittanza termica Prof. Arch. Paola Boarin, Ph.D. Laboratorio di Costruzione dell'Architettura 1 | A.A. 2013/14 | 5 dicembre 2013

