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1 Recommended books and resources

Lectures closely follow:

• Cohen-Tannoudji, Diu, Laloe; Quantum Mechanics

• J.J. Sakurai; Modern Quantum Mechanics

• L.I. Schiff; Quantum Mechanics

Other useful references:

• ”Quantum mechanics - a new introduction”, K. Konishi and G. Paf-
futi. Oxford Univ. Press (2009). An extremely useful textbook. Very
strongly recommended. It contains detailed explanations and also some
chapters that are not easy to find in other books. Remarkably, a very
interesting collection of problems is included. The solutions to all the
exercises are given in a CD but they can be found also in the website
of Kenichi Konishi:
http://www.df.unipi.it/ konishi/QMBook.html.

• ”Lectures on quantum mechanics, 2nd edition”, S. Weinberg. Cam-
bridge Univ. Press. An excellent book written by the famous Nobel
laureate. This book can be considered the first of a set of books. In-
deed, S. Weinberg wrote excellent books about quantum field theory,
gravitation, cosmology and these lectures on quantum mechanics are
basically the first step into the ”particle-sector” of his books.

• ”I fondamenti concettuali e le implicazioni epistemologiche della mec-
canica quantistica”, G.C. Ghirardi in Filosofia della fisica. Edizione
Bruno Mondadori, Milano, 1997. A very interesting paper about the
conceptual foundations of quantum mechanics written by one of the
masters of the subject. Very strongly recommended.

• ”Esercizi di meccanica quantistica elementare”, C. Rossetti. 2-volumes.
Levrotto e Bella - Torino. All the exercises are solved step-by-step. It
is a very useful collection of problems.

• ”Istituzioni di fisica teorica - 2nd edition”, C. Rossetti. Levrotto-Bella
Torino. A classic textbook on the subject.
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2 February 1, 2012

2.1 Exercise 1.1

We shall label as |n, l,m〉 the eigenstates of the hydrogen atom. Let χ be

χ = 〈n = 3, l = 2,m = 2|xy |n = 3, l = 0,m = 0〉 . (1)

Compute, as a function of χ,

〈n = 3, l = 2,m| Oj |n′ = 3, l′ = 0,m′ = 0〉

where Oj = xy, xz, yz, xx, yy, zz.
Solution:
In this problem we must evaluate matrix elements for various operators.

We will not follow the path of the direct evaluation. Indeed, we will exploit
the Wigner-Eckart theorem over and over again.

First of all, let us analyze the transformation properties of the operators
under rotation.

All the operators are components of a rank two cartesian tensor. Since
the Wigner Eckart theorem applies to a spherical tensor, let’s first recall how
a rank two cartesian tensor is mapped into a spherical tensor. The cartesian
tensor is symmetric therefore it decompose into a rank 0 spherical tensor

T 0 = (x2 + y2 + z2) (2)

and a rank 2 spherical tensor

T 2 =


x2 + 2ixy − y2

−2z(x+ iy)
1√
6
(−2x2 − 2y2 + 4z2)

+2z(x− iy)
x2 − 2ixy − y2

 (3)

Notice that the above definitions are unique up to two overall irrelevant con-
stants: T r → krT

r, where r is the rank. The Wigner-Eckart theorem provides
information about the ratio of matrix elements which is insensitive to these
overall kj constants.

According to the Wigner-Eckart theorem, we shall have (the Clebsch-
Gordan is 1 because the composition of angular momenta is trivial)

〈n = 3, l = 2,m|T 2
q |n′ = 3, l′ = 0,m′ = 0〉 = λδmq (4)
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〈n = 3, l = 2,m|T 0 |n′ = 3, l′ = 0,m′ = 0〉 = 0 (5)

From eqn. 3

xy =
i

4
(T 2
−2 − T 2

2 ) (6)

and from eqns. 1, 4 and 6 we have

λ = 4iχ.

Indeed we can write

χ =< 322 | xy | 300 >=< 322 | [ i
4
(T 2
−2−T 2

2 )] | 300 >=< 322 | [ i
4
(−T 2

2 )] | 300 >= − i
4
λ.

where the compact notation

|n0, l0,m0〉 ≡ |n = n0, l = l0,m = m0〉

has been used.
From eqns. 2.1, 5 and 6 we have

〈n = 3, l = 2,m = −2|xy |n′ = 3, l′ = 0,m′ = 0〉 = −χ

and all remaining matrix elements of xy vanish. Indeed, we can write

< 32− 2 | xy | 300 >=
i

4
< 32− 2 | T 2

−2 | 300 >=
i

4
λ = −χ.

Analogously

xz =
1

4
(T 2
−1 − T 2

1 )

which implies

< 321 | xz | 300 >=< 321 | 1

4
(T 2
−1−T 2

1 ) | 300 >=< 321 | 1

4
(−T 2

1 ) | 300 >= −λ
4

= −iχ

and

< 32−1 | xz | 300 >=< 32−1 | 1

4
(T 2
−1−T 2

1 ) | 300 >=< 32−1 | 1

4
(T 2
−1) | 300 >=

λ

4
= iχ

with all other matrix elements of xz vanishing.

yz =
i

2
(T 2
−1 + T 2

1 )
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implies

〈n = 3, l = 2,m = ±1| yz |n′ = 3, l′ = 0,m′ = 0〉 = −2χ

with all other matrix elements of yz vanishing. Indeed we have

〈32− 1| yz |300〉 =< 32−1 | i
2
(T 2
−1+T

2
1 ) | 300 >=< 32−1 | i

2
(T 2
−1) | 300 >=

i

2
λ = −2χ

and

〈321| yz |300〉 =< 321 | i
2
(T 2
−1+T

2
1 ) | 300 >=< 321 | i

2
(T 2

1 ) | 300 >=
i

2
λ = −2χ.

z2 =
1√
6
T 2

0 +
1

3
T 0

which implies

〈n = 3, l = 2,m = 0| z2 |n′ = 3, l′ = 0,m′ = 0〉 =< 320 | 1√
6
T 2

0 | 300 >=
4i√
6
χ

with all other matrix elements of z2 vanishing;

x2 = − 1

2
√

6
T 2

0 +
1

4
(T 2

2 + T 2
−2) +

1

3
T 0

0

which implies

〈n = 3, l = 2,m = ±2|x2 |n′ = 3, l′ = 0,m′ = 0〉 = iχ

〈n = 3, l = 2,m = 0|x2 |n′ = 3, l′ = 0,m′ = 0〉 = −i
√

2

3
χ

with all other matrix elements of x2 vanishing;

y2 = − 1

2
√

6
T 2

0 −
1

4
(T 2

2 + T 2
−2)−

1

2
T 0

0

which implies

〈n = 3, l = 2,m = ±2| y2 |n′ = 3, l′ = 0,m′ = 0〉 = −iχ

〈n = 3, l = 2,m = 0| y2 |n′ = 3, l′ = 0,m′ = 0〉 = −i
√

2

3
χ

6



with all other matrix elements of y2 vanishing.
Finally notice that the operators are the sum of two spherical tensors,

namely T 0 and T 2. Consequently, for generic matrix elements, we would need
the evaluation of two distinct non zero matrix elements to use the Wigner-
Eckart theorem to evaluate the remaining ones. In the present case, however,
one of the two tensors (namely T 0) always vanishes and one matrix element
is enough.

2.2 Exercise 1.2

We shall label as |n, l,m〉 the eigenstates of the hydrogen atom. Compute the
matrix elements

ajk = 〈n = 2, l = 1| rjpk |n′ = 3, l′ = 0,m′ = 0〉 ,

where rj and pk are the j-th component of the position operator and the k-th
component of the momentum operator, respectively.

Solution:
rj and pk are both parity-odd. Consequently, the operator rjpk is parity-

even and, therefore, it must connect states with the same parity. Since the
parity of the wave functions is (−1)l, all the matrix elements are vanishing.

2.3 Exercise 2.1

An hydrogen atom is subjected to a perturbation W

W = λS · r

Evaluate if and how the degeneracy of the n = 2 level is removed.
Solution:
We will neglect the fine-structure splitting. The degeneracy is 8: we have

a degeneracy n2 = 4 without spin and then we take into account the two
possible spin states (up and down) in the basis |L2, S2, Lz, Sz〉.

Our intention is to use time-independent perturbation theory for the de-
generate case. We must diagonalize the perturbation matrix (it is an 8 × 8
matrix).

The first step is to evaluate the matrix elements and, as usual, we im-
pose the selection rules coming from parity and Wigner-Eckart theorem. Let
us start with parity: the perturbation is parity-odd (it is a pseudo-scalar
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operator). Hence the perturbation must connect states with opposite par-
ity. In particular the matrix elements of the form < 2s | W | 2s > and
< 2p | W | 2p > are all vanishing. We are left with < 2s | W | 2p >
expectation values.

To diagonalize the matrix, it is better to change the basis. Let us further
elaborate this point. The W operator is a scalar product of two vector opera-
tors, hence is a scalar under rotations and it commutes with the total angular
momentum operators. This can be cross-checked verifying the commutation
relationships [Jk,W ] = 0. It is therefore convenient to move to the J, l, s, Jz

basis. From the above consideration only matrix elements with ∆J = 0,
∆Jz = 0 and ∆l = ±1 (parity) are non vanishing.

From the above constraints the only non vanishing matrix elements are

〈j = 1/2, l = 0, s = 1/2, jz = ±1/2|W |j = 1/2, l = 1, s = 1/2, jz = ±1/2〉 = φ±

and the hermitian conjugates. Taking into account the Wigner-Eckart theo-
rem we have

φ+ = φ− = φ

since the operator is a scalar (i.e. the Clebsch-Gordan coefficient is trivial).
We infer that the four J = 3/2 states don’t receive any contribution. The

J = 1/2, jz = ±1/2 subspaces are invariant subspaces for the operator W .
The matrix element restricted to these subspaces are (as discussed we have
two identical such matrices, one for jz = 1/2 and one for jz = −1/2)

WJ=1/2,jz=±1/2 =
(

0 φ
φ∗ 0

)

with eigenvalues (energy shift)

∆E = ±|φ|

and (four) eigenvectors given by

1√
2

(|j = 1/2, l = 1, jz = 1/2〉 ± |j = 1/2, l = 0, jz = 1/2〉)

and

1√
2

(|j = 1/2, l = 1, jz = −1/2〉 ± |j = 1/2, l = 0, jz = −1/2〉)
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Let us evaluate φ. To perform the calculation we move back to the
l, s, lz, sz basis exploiting the Clebsch-Gordan coefficients. Indeed, we can
write

| l = 0, s = 1/2, J = 1/2, Jz = 1/2 >=| l = 0, s = 1/2, lz = 0, sz = 1/2 >

and

| l = 1, s = 1/2, J = 1/2, Jz = 1/2 >=
√

2/3 | lz = 1, sz = 1/2 > −
√

1/3 | lz = 0, sz = 1/2 > .

Consequently, to evaluate

φ =< l = 0, s = 1/2, J = 1/2, Jz = 1/2 | W | l = 1, s = 1/2, J = 1/2, Jz = 1/2 >

we have to calculate two expectation values. Let us consider, for example,
the direct evaluation of < 2s+ | W | 2p1− >. We have

< 2s+ | W | 2p1− > = < 2s+ | λS · r | 2p1− >=< 2s+ | λ[Sxx+ Syy + Szz] | 2p1− >=

= < 2s+ | λ[
S+ + S−

2
x+

S+ − S−
2i

y + Szz] | 2p1− >=

= < 2s+ | λ[
S+

2
x+

S+

2i
y + Szz] | 2p1− >=

= < 2s+ | λ[
x

2
+
y

2i
] | 2p1+ >

where in the last step we exploited the factorization of the wave function and
the orthogonality of up and down states. Now only the orbital part remains
and we write

< 2s | λ[
x

2
+
y

2i
] | 2p1 > = λR

∫
dΩ(Y 0

0 )∗[
cosφsinθ

2
+
sinφsinθ

2i
]Y 1

1 =

= −λR
∫ ∫

dφdθsin3θ
1√
4π

√
3

8π

1

2
= −2λR

3

√
3/8,

where R is the radial part of the integral and it is given by

R =
∫ ∞

0
drr2R∗2srR2p = rB

∫ ∞

0
dxx4e−x 1

4
√

12
(2− x).

In this formula we called x = r/rB and rB is the Bohr radius. The integration
over x can be easily performed exploiting the formulas in Appendix. The
remaining expectation value can be calculated in a similar way.
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2.4 Exercise 2.2

Let’s consider a tridimensional isotropic oscillator.

• Determine the degeneracy of the first excited level.

• Assume that the particle is charged and placed into a uniform electric
field of intensity E0. Evaluate the first non vanishing perturbative
contribution to the energies of the first excited level.

Solution:
Question A
The degeneracy of the levels can be studied in various ways (see, for

example, Konishi-Paffuti, p.142-143).
The simplest one is to observe that, mathematically, the problem is equiv-

alent to a system of three identical oscillators. The energy levels are thus
given by

En1n2n3 = h- ω(3/2 + n1 + n2 + n3) = h- ω(3/2 +N)

and for a given energy level the degeneracy is provided by the set of n1, n2,
and n3 such that

N = n1 + n2 + n3

For N = 1 it is readily find2 that the level is three-fold degenerate.
Another possibility is to point out that the n-th energy eigenstates contain

the angular momentum eigenstates up to l = n and furthermore the given
level has a definite parity. Summing the multiplicity 2l+1 over l = 0, 2, ..., n
(n even) or l = 1, 3, ..., n (n odd), we obtain the degeneracy formula:

d(n) = (n+ 2)(n+ 1)/2.

Another strategy to obtain this formula is to point out that the hamiltonian
is invariant under SU(3) (this group acts on the three operators ai of the
oscillator). The degeneracy can be studied considering the totally symmetric
irreducible representations of SU(3). The calculation can be done exploiting
Young tableaux. The result is the same found before.

2For a generic level the degeneracy D is D =
∑N

j1=0

∑N−j1
j2=0 1 =

∑N
j1=0(N − j1 + 1) =

1
2 (N +1)(N +2). Indeed we can choose n1 in N +1 ways, then we are left with N −n1 +1
possibilities for n2 and n3 is fixed (to N − n1 − n2).
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Question B
We must apply time independent perturbation theory. The perturbation

can be written as
V = −qE0z.

The first excited level has degeneracy factor 3. We must diagonalize V in
this 3-dimensional subspace of degenerate states. V is odd under parity and,
consequently, it must connect states with opposite parity. Hence at first
order in perturbation theory the first excited level is not modified because
all the states of the first excited level are odd under parity. We move to
second order.

Formally our problem is to work out the result of second order perturba-
tion theory for a system with degenerate levels when the degeneracy of the
levels is not removed at first order. In general this is fairly involved and
requires a careful adjustment of the eigenstates (see Sakurai, problem 12
chapter 5, for an example). In the present case, however, the symmetries of
the potential simplify the issue. As discussed below the unperturbed poten-
tial is a scalar under rotation and the perturbation is a vectorial operator
with magnetic quantum number 0. Thus the perturbation will be non van-
ishing only among states with the same lz and, as shown below, this implies
that we can treat the problem in analogy with a one dimensional harmonic
oscillator without any degeneracy.

Our next task is to understand which states can be connected to the first
excited level exploiting the perturbation. We will call the ground state 000,
the three states of the first excited level (100, 010, 001) and the six states
of the second excited level (200, 020, 002, 110, 101, 011). The selection rules
are due to 1) parity and 2) Wigner-Eckart theorem. The Wigner-Eckart
theorem corresponds formally to the composition of an angular momentum
l = 1 (characterizing the first excited level) with another angular momentum
l = 1 (characterizing the perturbation written in terms of Y 0

1 ). Consequently,
we get an angular momentum characterizing the bra which can be 0, 1 or
2. Parity tells us that only 0 and 2 are allowed. Moreover the perturbation
acts on the third cartesian factor of the wave function. All this symmetries
are readily exhibited using the occupation number basis |n1, n2, n3〉. The
perturbation can be expressed as a combination of ladder operators

z =
1√
2
(a3 + a†3)
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from which we have that its non vanishing matrix elements fulfill

∆n1 = ∆n2 = 0 and ∆n3 = ±1

Thus any pair n1, n2 labels an invariant subspace of the perturbation. Within
an invariant subspace n3 labels distinct energy levels and non degenerate
perturbation theory can be applied.

At second order the formula is (see for example the book by Weinberg,
2nd edition, chapter 5):

δ2Ea =
∑
b6=a

| (Ψb, δHΨa) |2

Ea − Eb

.

We infer that the only matrix elements that we have to evaluate are:
A =< 000 | V | 001 >, B =< 100 | V | 101 >, C =< 002 | V | 001 > and
D =< 010 | V | 011 >. The final formula becomes

δE100 =| B |2 /(E100 − E101)

δE010 =| D |2 /(E010 − E011)

δE001 =
| A |2

(E001 − E000)
+

| C |2

(E001 − E002)
.

The matrix elements can be readily evaluated using the results for the
ladder operators. Altenatively, the integrals can be evaluated in cartesian
coordinates. Even without the calculation we see that A=B=D because we
can obtain B from D simply exchanging y ↔ x and the wave functions along
the axes are normalized.

3 Exercise 1.1, February 22, 2012

Let |j = 3/2, jz〉 label the simulataneous eigenvectors of the angular momen-
tum operators J2 and Jz. Evaluate

〈j = 3/2, j′z| Jm |j = 3/2, jz〉 , m = x, y, z

and show that the results are in agreement with the Wigner-Eckart theorem.
Solution:
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The angular momentum is 3/2. Consequently we must consider a space
with 4 states: jz = ±3/2,±1/2. We will proceed stepwise considering sepa-
ratrely (1) the direct evaluation of the matrix elements and (2) the Wigner-
Eckart theorem.

Before moving to the computation notice that Jm are the components
of a cartesian vector. Since the Wigner-Eckart theorem applies to spherical
tensor let’s first move to a spherical tensor of rank one

V = (−J+,
√

2Jz, J−)

The matrix elements can be readily obtanined from those of V with the
appropriate linear combinations.

Direct evaluation:
Needless to say,

Jz |j = 3/2, jz = m〉 = m |j = 3/2, jz = m〉 ,

where we have chosen h̄ = 1. Therefore the matrix is

√
2Jz =

√
2


3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

 .

The evaluation of J± on the eigenstates of angular momentum is

J± |j,m〉 =
√

(j ∓m)(j ±m+ 1) |j,m± 1〉

and therefore

J+ |3/2, 3/2〉 = 0

J+ |3/2, 1/2〉 =
√

3 |3/2, 3/2〉
J+ |3/2,−1/2〉 = 2 |3/2, 1/2〉

J+ |3/2,−3/2〉 =
√

3 |3/2,−1/2〉
J− |3/2, 3/2〉 =

√
3 |3/2, 1/2〉

J− |3/2, 1/2〉 = 2 |3/2,−1/2〉
J− |3/2,−1/2〉 =

√
3 |3/2,−3/2〉

J− |3/2,−3/2〉 = 0.
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For the matrix elements V we have

−J+ =


0 −

√
3 0 0

0 0 −2 0
0 0 0 −

√
3

0 0 0 0

 .

J− =


0 0 0 0√
3 0 0 0

0 2 0 0
0 0

√
3 0

 .

√
2Jz =

√
2


3
2

0 0 0
0 1

2
0 0

0 0 −1
2

0
0 0 0 −3

2

 .

Wigner-Eckart theorem:
To check the Wigner-Eckart theorem is now sufficent to verify that the

matrix elements computed above coincide up to an overall constant (the
reduced matrix element) with the Clebsch-Gordon coefficients

〈j1 = 1, j2 = 3/2;m1,m2| j1 = 1, j2 = 3/2; j = 3/2,m〉

Using the short notation 〈j1 = 1, j2 = 3/2;m1,m2| j1 = 1, j2 = 3/2; j =
3/2,m〉 = 〈m1,m2|m〉 we have

〈
1,

1

2

∣∣∣∣ 3

2
〉 =

√
2

5〈
1,−1

2

∣∣∣∣ 1

2
〉 =

√
8

15〈
1,−3

2

∣∣∣∣− 1

2
〉 =

√
2

5〈
0,

3

2

∣∣∣∣ 3

2
〉 = −

√
3

5〈
0,

1

2

∣∣∣∣ 1

2
〉 = −

√
1

15〈
0,−1

2

∣∣∣∣− 1

2
〉 =

√
1

15
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〈
0,−3

2

∣∣∣∣− 3

2
〉 =

√
3

5〈
−1,

3

2

∣∣∣∣ 1

2
〉 = −

√
2

5〈
−1,

1

2

∣∣∣∣− 1

2
〉 = −

√
8

15〈
−1,−1

2

∣∣∣∣− 3

2
〉 = −

√
2

5

With our choice for the normalizatio of the sperical tensor for the reduced
matrix element we have

〈j = 3/2||V ||j′ = 3/2〉 = −
√

15

2

and multiplying the above Clebsch-Gordon coefficents for the reduced matrix
element we obtain the matrix elements of the spherical tensor

V ≡ (−J+,
√

2Jz, J−)

3.1 Exercise 3.1

Let’s consider a charged particle placed into an isotropic tridimensional har-
monic oscillator potential of frequency ω0. Assume that the particle is placed
into a time dependent and spatially uniform magnetic field B = B0 sin(ωt).

• Establish, at first order in perturbation theory, the allowed transitions
from the ground state. Discuss the conditions of validity of perturba-
tion theory.

• Compute the corresponding transition probability per unit time. Dis-
cuss the conditions of validity of the result.

Solution:
Question A
We choose the frame with the z-axis parallel to the magnetic field:

B(t) = B0sin(ωt)uz.
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With this choice we have

H = H0 −
qB

2mc
Lz +O(B2).

The ground state has l=0 and, therefore, m=0. Consequently, Lz |ground〉 =
0 and no transition is induced at first order by the perturbation

V = − qB

2mc
Lz.

We can consider the perturbation quadratic in the magnetic field, namely

V (t) =
q2

8mc2
B2(x2 + y2).

The selection rules are, as usual, parity and Wigner-Eckart theorem. Parity
tells us that the perturbation must connect states with the same parity. Since
the ground state is even, the transition can take place only to even states. Let
us study the transformation properties of the perturbation under rotation.
We have3

x2 + y2 = T
(2)
0 + T

(0)
0

T
(2)
0 =

1

2
(x2 + y2 − z2)

T
(0)
0 =

1

2
(x2 + y2 − z2)

We infer that this perturbation, at first order, can connect the ground state
to the states with l = 0 or l = 2. If we work in cartesian coordinates we see
that the allowed transitions are

(000) 7−→ (200)

(000) 7−→ (020)

since

r2
j =

1

2
(a2

j + aj
†2 + aja

†
j + a†jaj)

3Recall that an overall normalization constant in the definition of the various T j →
kjTj is irrelevant to the extent that the Wigner-Eckart theorem is concerned and will
result only into rescaling of the reduced matrix elements.
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where we have used the compact notation

(nx, ny, nz) ≡ |nx, ny, nz〉 =
1√

nx!ny!nz!
a†nx

x a†ny
y a†nz

z |0〉

Question B
Now we evaluate the transition probability per unit time for (000) 7−→

(200). The remaining transition, namely (000) 7−→ (020) can be evaluated
in a similar way.

We apply time-dependent perturbation theory at first order. The main
formula is

a(1)(t) = − i

h̄

∫
eiωnit

′
Vnidt

′.

We have

Vni(t
′) =

q2B2

8mc2
< 200 | (x2 + y2) | 000 > .

We start with

< 200 | (x2 + y2) | 000 > =
∫
ψ∗x,2x

2ψx,0dx
∫
ψ∗y,0ψy,0dy

∫
ψ∗z,0ψz,0dz

+
∫
ψ∗x,2ψx,0dx

∫
ψ∗y,0y

2ψy,0dy
∫
ψ∗z,0ψz,0dz.

Since the wave functions are orthonormal, we have

< 200 | (x2 + y2) | 000 >=
∫
ψ∗x,2x

2ψx,0dx.

To proceed further, we exploit a formula valid in the case m = n − 2
(see Konishi-Paffuti p. 66) (or alternatively we directly evaluate the result
substituting x2 for the ladder operators)

(x2)nm =
1

α2

√
n(n− 1)

4

and we infer that

< 200 | (x2 + y2) | 000 >=
h̄√

2mω0

.

Therefore we can write

a(1)(t) = − i

h̄

∫
eiωnit

′ q2[B0sin(ωt′)]2

8mc2
h̄√

2mω0

dt′.

17



To evaluate explicitly the integral, we point out that

sin2(ωt′) =
cos(2ωt′)− 1

−2

and hence∫
eiωnit

′
sin2(ωt′)dt′ = −1

2

∫
[ei(ωni+2ω)t′ + ei(ωni−2ω)t′ + eiωnit

′
]dt′.

The amplitude becomes

a(1)(t) =
q2B2

0

16
√

2m2c2ω2
0

[eiωnit
′
(

ei2ωt′

ωni + 2ω
+

e−i2ωt′

ωni − 2ω
+

1

ωni

)]tt0 .

The probability is obtained by taking the modulus squared. The proba-
bility per unit time is dP/dt.

The validity of the above approximation requires |a1| � 1, namely away
from the resonant condition ω ' ω0 = 1/2ωni

q2B2
0

16
√

2m2c2ω2
0

1

|ωni − 2ω|
� 1; t > 0

whereas, near the resonant condition, the result is valid only for small t

a1 ω→ω0→ q2B2
0

16
√

2m2c2ω2
0

t⇒ t� 16
√

2m2c2ω2
0

q2B2
0

4 Exercise 1.2, June 26, 2012

Let us consider a tridimensional harmonic isotropic oscillator.

• Determine the degeneracy of the second excited level.

• Tell if and how the degeneracy of the second excited level is removed by
the following perturbations: O1 = λ1|r|2, O2 = λ2r and O3 = λ3xy.

Solution:
Question A
The degeneracy can be evaluated with the usual formula

d(n) =
(n+ 2)(n+ 1)

2
,
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and, consequently, the second excited level has 6 degenerate states.
Question B
We must use time-independent perturbation theory and, in particular, we

must diagonalize the perturbation matrix. Let us discuss separately the var-
ious operators starting from O1 = λ1|r|2. The selection rules are, as usual,
parity and Wigner-Eckart theorem. Parity does not give any information
because the operator is parity-even and, therefore, it must connect states
with the same parity. However, at the second excited level all the states are
parity even and, hence, no information is obtained from parity considera-
tions. The Wigner-Eckart theorem is more useful: the operator is a scalar
and, consequently, it must connect states with the same l (and also with
the same m). Hence the matrix is diagonal. We have 6 diagonal entries and,
in the basis |n = 2, l = 0,m = 0〉, |n = 2, l = 2,m = 2〉, |n = 2, l = 2,m = 1〉,
|n = 2, l = 2,m = 0〉, |n = 2, l = 2,m = −1〉, |n = 2, l = 2,m = −2〉, the eigen-
values are respectively A, B, B, B, B, B, where

A ≡< n = 2, l = 0,m = 0 | λ1r
2 | n = 2, l = 0,m = 0 >

and
B ≡< n = 2, l = 2,m | λ1r

2 | n = 2, l = 2,m > .

One remark is in order. We have 5 eigenvalues equal to B, because the
quantum number m cannot modify the radial part of the integral and the
spherical harmonics are normalized. The same result can be obtained ex-
ploiting the Wigner-Eckart theorem.

We can evaluate A and B directly and, for this purpose, the appendix
will be useful. Indeed we have

A =
∫ ∞

0
drλ1r

4R∗20R20 = λ1
2

3

1√
π

(
h̄

mω
)5/2

∫ ∞

0
dξξ4(4ξ4 + 9− 12ξ2)e−ξ2

,

where r ≡
√

h̄
mω
ξ. The integral can be easily evaluated with the formulas in

Appendix.
Analogously, for the B coefficient we write

B =
∫ ∞

0
drλ1r

4R∗22R22 = (
h̄

mω
)5/2λ1

16

15

1√
π
I,

where (see appendix)

I =
∫ ∞

0
dξξ8e−ξ2

=
105

32

√
π.
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We infer that the degeneration is partially lifted.
Now we move to the second operator, namely O2 = λ2r. In this case the

operator is odd and, therefore, it must connect states with opposite parity.
We infer that the perturbation matrix is zero at first order.

Now we discuss the last operator, namely O3 = λ3xy. The problem is
easier to deal with in the occupation number basis. The system is equivalent
to a system of three identical uncoupled oscillators. Denoting by

aj =
1√
2
(
√
mωrj + i

pj√
m

)

the three destruction operators and by

Nj = aja
†
j

the corresponding number operators. The unperturbed hamiltonian is

H =
3∑

j=1

Nj +
3

2
h-

Let’s denote by

|n1, n2, n3〉 ∼
3∏

j=1

(a†j))
nj |0〉

the heigenstates of the unperturbed hamiltonian.
It is immediate to check that the perturbation λ3r1r2 commutes with N3

therefore n3 labels the invariant subspaces of the perturbation namely it can
have non zero matrix elements only between states with the same n3. The
second excited stated is six-fold degenerate and its heigenstate are given by

3∑
j=1

nj = 2

Within this energy level we have three invariant subspaces n3 = 0, 1, 2. The
perturbation can be written as

λ3xy =
λ3

2
(a1 + a†1)(a2 + a†2) = χ3(a1a

†
2 + a2a

†
1 + . . .)

where the omitted terms don’t contribute to first order perturbation theory
since they vanish within the second excited state (they raise or lower the
level by two units).
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Taking into account the above consideration we now come to the evalua-
tion of the matrix element of the perturbation among the states

|n1, n2, n3〉 ; n1 + n2 + n3 = 2

The n3 = 2 invariant subspace is non degnerate, we have

〈0, 0, 2| (a1a
†
2 + a2a

†
1) |0, 0, 2〉 = 0

and thus δE = 0
For the n3 = 1 invariant subspace the perturbation restricted to this

subspace (|1, 0, 1〉 and |0, 1, 1〉 reads

Õ(n3=1)
3 = χ3

(
0 1
1 0

)
with eigenvalues

δE = ±χ3

and eigenvetors
1√
2
(|1, 0, 1〉 ± |)〉

Finally for the n3 = 0 invariant subspace (|2, 0, 0〉,|0, 2, 0〉 and |1, 1, 0〉 )
the perturbation reads

Õ(n3=0)
3 =

√
2χ3

 0 0 1
0 0 1
1 1 0


with eigenvalues

δE = 0,±2χ3

and eigenvectors

1√
2
(|2, 0, 0〉 − |0, 2, 0〉)

1√
2
|1, 1, 0〉 ± 1

2
(|2, 0, 0〉+ |0, 2, 0〉)
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4.1 Exercise 3.2

Let’s consider a charged particle placed into an isotropic tridimensional har-
monic oscillator potential of frequency ω0. Evaluate the decay probability per
unit time of the first excited level.

Solution:
The hamiltonian is

H =
p2

2m
+

1

2
mω2

0r
2.

The text does not mention any electromagnetic field but we know that
the particle has a non-vanishing electric charge. The decay is consequently
due to a spontaneous emission and we will evaluate the decay probability
per unit time exploiting the dipole approximation. Let’s briefly recall the
arguments leading to the evaluation of spontaneous emission from an atomic
system which apply here unchanged. Strictly speaking Schröedinger formal-
ism doesn’t apply to the present case. However with mild assumptions we
can circumvent the issue. Our assumptions are

• our system consits of an accelerated charge particles and in analogy
with classical physics we assume that the charged particle produces an
electromagnetic wave and thus our final state will be

|ψf〉 =
∑
ε

∫ dk

(2π)3
εAke

ikr+iωt |0〉

• the system is isolated: energy is conserved

• the system is isolated: momentum is conserved. The various fourier
components of the radiation carry differente momentum, thus the recoil
of our system will be different for different values of k. Different values
of k will point to different final states (to be more accurate in our
previous formula we should trade |0〉 → |0,p(k)〉 to account for the
momentum of the bound system). Thus we evaluate the probability of
the emission of a plane wave with wave vector k and polarization ε and
then sum over these probabilities4.

4This goes very much in the direction of quantizing the electromagnetic field and having
k as an additional quantum number to describe the final state.
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We now apply time dependent perturbation theory, in presence of an
harmonic perturbation induced by an electromagnetic plane wave. In view
of the previous discussion our final state is a continuum of final states labelled
by k and ε and we can use the standard results which are appropriate in this
limit. To assess conveniently the normalization for the emitted radiation we
assume that it is bounded in a box of size L which we shall set to infinity at
the very end.

The transition rate per unit time, the decay width, is

Γ =
2πe2

h- m2
ec

2

∑
k,ε

|Ak|2
∑

ε

∣∣∣〈0| eikrεp |1〉
∣∣∣2 δ(E2 − E1 − h- ω)

Now
ω = kc

thus the δ “function” ensures that k = |k| is nearly fixed. If we want the
transition rate for a final state radiation with k ∈ [k, k+ ∆k] and k within a
solid angle ∆Ω the result of the sum will simply be an overall multiplicative
factor N(k,Ω), namely the number of k wave vector falling into the given
volume V (k,Ω) = k2∆K∆Ω. The δ “function” finally ensures that the result
vanishes unless k is tuned to reproduce the energy shift h- ω0.

With our boundary conditions k can take only a discrete set of values

k ≡ 2π

L
(n1, n2, n3)

nj being positive integers. Each of these wave vector will “sit” in the center
of a cube of volume V = (2π/L)3 and thus, up to surface terms, N(k,Ω) will
be the ratio among V and V

N(k,Ω)∆k∆Ω = L3 k2

(2π)3
+O(L2)∆k∆Ω

Thus

Γ =
2πe2

h- m2
ec

2

∑
k,Ωk

N(k,Ωk)∆k∆Ωk |Ak|2
∑

ε

∣∣∣〈0| eikrεp |1〉
∣∣∣2 δ(E2 − E1 − h- ω)

Let’s now fix |Ak|. From the requirment of eergy conservation, the radi-
ation should carry away the energy lost by the particle h- ω0. For the electro-
magnetic field we have

E = i
Akω

c
εeiωt+kr B = ik× εeiωt+kr
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and the associated energy is

Ẽ =
1

4π

∫
dr EE∗ + BB∗ = 2L3 |A0|2 ω2

c24π
⇒ |A0| =

√
4πc2Ẽ

2ω2L3

and thus with Ẽ = h- ω

|Aω/c| =
√

4πc2h-

2ωL3

namely A is a function of |k| only.
We finally have

Γ =
2πe2

h- m2
ec

2

c2h-

4π2

∫
dkdΩk

k2

ω

∑
ε

∣∣∣〈0| eikrεp |1〉
∣∣∣2 δ(h- ω0 − h- kc)

where we have taken the limit L→∞ and traded
∑ →

∫
. We have∫

dkδ(h- ω0 − h- kc)g(k) =
∫

dkδ(k − ω0/c)
1

h- c
g(k)

and thus

Γ =
e2ω0

2πm2
eh
- c3

∫
dΩk

∑
ε

∣∣∣〈0| eikrεp |1〉
∣∣∣2

We now evaluate, in the dipole approximation, the matrix element

| 〈0| eikrεp |1〉 |2 ' me

2

∣∣∣〈0| ε(a + a†) |1〉
∣∣∣2

For convenience let’s take angolar momentum Lz eigenvectors

|1,m = 1〉 ≡ − 1√
2
(|nx = 1, ny = 0, nz = 0〉+ i |nx = 0, ny = 1, nz = 0〉)

|1,m = 0〉 ≡ |nx = 0, ny = 0, nz = 1〉

|1,m = −1〉 ≡ 1√
2
(|nx = 1, ny = 0, nz = 0〉 − i |nx = 0, ny = 1, nz = 0〉)

and thus we have

| 〈0| eikrεp |1〉 |2 '
{

me

4
(ε2x + ε2y) m = ±1

me

2
ε2z m = 0
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so the width is

Γm =
e2ω0

4πmeh- c3

∫
dΩk

∑
ε

Cm

where

C±1 =
1

2
(ε2x + ε2y)

C0 = ε2z

If we parametrize the wave vector direction uk as

uk = (sin θk cosφk, sin θk sinφk, cos θk)

We can choose the two polarization vectors as

ε1 = (sinφk,− cosφk, 0)

ε2 = (cos θ cosφk, cos θ sinφk,− sin θ)

Notice that any two linear combination of ε1,2 are equivalent. We are dealing
with “polarized atoms” thus the z axis is selected by the polarization of the
initial atom. We have

dΩk

∑
ε

|C1|2 =
∫

dΩk 1 + cos2 θ = 2π
∫

d cos θ 1 + cos2 θ =
8

3
π

dΩk

∑
ε

|C0|2 = 2
∫

dΩk sin2 θ = 4π
∫

d cos θ sin2 θ =
8

3
π

dΩk

∑
ε

|C−1|2 =
∫

dΩk 1 + cos2 θ = 2π
∫

d cos θ 1 + cos2 θ =
8

3
π

and finally

Γm =
2e2ω0

3πmeh- c3

indipendent fromm, as expected since the choice of the z axis is arbitrary and
it cannot have any impact on the physical result. Notice that our calculation
contains more information than just the width of the excited state. The
angular distribution of the radiation will be

dΓ±1

dΩk

∼ 1 + cos2 θk

dΓ0

dΩk

∼ sin2 θk
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If we polarize the system (Stark or Zeeman effect for example) we then have
a preferred direction (the polarization) and the angular distribution is not
isotropic. We also gathered information about the polarization of the emitted
light. From the above calculation we notice that for m = 0 the polarization
is given directly from ε1 since the transition amplitude to polarization ε2

vanishes. Since the polarization vector is real the polarization is linear. For
m = ±1 we need to introduce complex polarization vectors to describe the
polarization of the emitted light. Defining

ε± =
1√

1 + cos2 θk

(cos θk,∓i cos θk,− sin θe∓iφk

which satisfies ukε±, ε±ε∗± = 1 and ε+ε∗− = 0 It’s immediate to check that
ε± describe the polarization of the radiation emitted if m = ±1. Since
the polarization vector is complex5 the emitted radiation will be elliptically
polarized (in general).

4.2 Exercise 2.3

Consider a charged particle confined into a tridimensional box of length L.
Compute the polarization of the light emitted in the decay of the first excited
level (choose one specific wave function).

Solution:
We are considering the spontaneous emission of a photon and we will

work in dipole approximation. We choose the initial state as

ψ = (
2

L
)3/2sin(

πx

L
)sin(

πy

L
)sin(

π2z

L
).

With our choice of wave function,

〈ψ| εr |0〉 ∼ εz

indeed if the transition operator don’t depend on z we shall have∫
dz sin

π

L
z sin

2π

L
z = 0

Let’s denote with
uk ≡ (sin θ cosφ, sin θ sinφ)

5more precisely the condition to have elliptic polarization is ε = v1 + iv2 with vj real
and linearly independent; if the vj are linearly dependent the polarization is linear.
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the direction of the wave vector. At a given angle, sufficently far away from
the system, it will point in the direction of the observer. Choosing as a basis
for the polarization vector

ε1 = (sinφk,− cosφk, 0)

ε2 = (cos θ cosφk, cos θ sinφk,− sin θ)

it is immediate to verify that the amplitue is non vanishing only for the
polarization ε2 which therefore is the polarization of the emitted radiation
as a function of the emission angle with respect to the direction of the initial
state “polarization”. Since ε2 is real the polarization is linear.

4.3 Exercise 1.2

Consider a charged particle into a two dimensional well of infinite depth and
width L. Evaluate the probability for the particle, initially into the ground
state, to move to the first excited level due to a perturbing electromagnetic
field time dependent and spatially isotropic:

E = E0 cos(ωt)ux

Specify the conditions under which first order time dependent perturbation
theory is valid.

Solution:
We shall work with h- = 1.
The perturbing potential is

W = −qE0x cos(ωt)

To first order in perturbation theory the transition probability amplitude
is given by

a01 = −i
∫ t

0
〈1|W |0〉 eiω10sds =

iqE0

2
〈1|x |0〉

∫
[ei(ω10+ω)s + (ω → −ω)]ds

=
1

2
{qE0 〈1|x |0〉

ω10 + ω
[ei(ω10+ω)t − 1] +

qE0 〈1|x |0〉
ω10 − ω

[ei(ω10−ω)t − 1]}

We have

〈1|x |0〉 =
2

L

∫ L

0
dxx sin

(
π

L
x

)
sin

(
2π

L
x

)
= −16L

9π2
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The transition probability is P01 = |a01|2. Perturbation theory is valid
provided the probability is small, namely either∣∣∣∣∣ 8qE0L

9π2(ω10 ± ω)

∣∣∣∣∣ � 1

or, in the case ±ω ' ω10, if

8qE0Lt

9π2
� 1

which is obtained with a small t expansion.

4.4 Exercise 2

An hydrogen atom is in the ground state and is subjected to a time-dependent
perturbation W (t). Compute, in the dipole approximation, the transition
probability to the n = 2 state if the perturbation is a monochromatic plane
wave:

E = E0uxcos(ωt− kz).

Solution:
The hamiltonian is

H =
p2

2m
+ eφ− e

mc
A · p

where we neglected the A2-term because the electron and the proton form a
bound state. The vector potential is

A = 2A0ε̂cos(
ω

c
n · x− ωt),

where ε̂ is the polarization vector and we have

n = (0, 0, 1)

ε̂ = ux.

Therefore we can write

A = A0[e
i(kz−ωt) + e−i(kz−ωt)]ux.
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The perturbing potential is

V (t) = − e

mc
A · p.

The next step is to use the dipole approximation. Hence we write

V (t) ' − e

mc
A0ux · p = − e

mc
A0ε̂ · p.

Now we use time dependent perturbation theory. The relevant formula is

a(1)
n (t) = − i

h̄

∫ t

t0
eiωnit

′
Vni(t

′)dt′,

where

Vni(t
′) =< n | V (t) | i >= −eA0

mc
< n | px | i >= −eA0

mc
imωni < n | x | i > .

It is time to discuss selection rules. As usual they are due to (1) parity and
(2) Wigner-Eckart theorem. Let us start from parity. The operator is parity-
odd and consequently it must connect states with opposite parity. Therefore
only the states with n = 2 and l = 1 can be our final states.

Now let us exploit the Wigner-Eckart theorem to obtain some more se-
lection rule. The operator x is a vector operator and in general we can write

Vx =
V

(1)
−1 − V

(1)
1√

2
.

Consequently, only the transitions with ∆m = ±1 are allowed.
We infer that the only allowed transitions to n = 2 are

|n = 1, l = 0,m = 0〉 7−→ |n = 2, l = 1,m = −1〉 and
|n = 1, l = 0,m = 0〉 7−→ |n = 2, l = 1,m = 1〉. Let us start considering the
first transition. We write

< 2, 1,−1 | x | 1, 0, 0 >=
∫
dV ψ∗21−1xψ100 =

∫
drr3R2,1R1,0

∫
dΩ

√
3

8π
sin2θeiφcosφ

1√
4π
.

We split the integration into a radial part and an angular part. The radial
part (use the Appendix for the explicit calculation) is

1

r4
B

√
6

∫ +∞

0
drr4e−3r/(2rB) ≡ IR,
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where rB = h̄2/(me2) ' 0.5× 10−8 cm is the Bohr radius and sets the scale
of the problem. The angular part is∫

dΩ
√

3/(8π)sin2θeiφcosφ
1√
4π

=
4

3

√
3/32.

Hence we can write
< 211 | x | 100 >= IR/

√
6.

Now we are ready to evaluate the transition probability to this particular
state. We write the amplitude as

a
(1)
21−1(t) = − i

h̄

∫ t

t0
eiωnit

′
[−eA0

mc
imωni(IR/

√
6)]dt′ =

ieA0IR

h̄c
√

6
eiωnit0 [eiωni(t−t0)−1].

Therefore the transition probability to the state |n = 2, l = 1,m = −1〉 is

P21−1(t) =| a(1)
21−1(t) |2=

e2A2
0I

2
R

3h̄2c2
{1− cos[ωni(t− t0)]}.

In a completely analogous way we must calculate the transition probability
to the remaining state |211〉. The final probability is given by the sum

Ptot = P21−1 + P211.

4.5 Exercise 3

Consider three electrons subject to an harmonic oscillator tridimensional
potential.

V = (1/2)mω2|r|2.

Neglecting mutual interaction, evaluate the ground state energy, degen-
eracy, angular momentum and wave function.

Solution:
The problem for a single particle has a well-known solution with energy

En = h̄ω(n+ 1/2).

When we ”build” the gorund state for three electrons, we must antisym-
metrize the total wave function. Hence, we must fill the energy levels in
harmony with the Pauli principle. We have two electrons with n = 0 and
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opposite spin and one electron with n = 1 and arbitrary spin. Therefore, the
energy of the ground state for three electrons is

Eground =
h̄ω

2
2 +

3

2
h̄ω =

5

2
h̄ω.

To proceed further we analyze the degeneracy. The degeneracy is 6.
Indeed the electron with n = 1 can be in a nx = 1, ny = 0 and nz = 0 state
or ny = 1 or nz = 1 and can have up or down spin. The orbital angular
momentum is one (the two electrons in the ground state have zero angular
momentum) whereas the total spin is 1/2 since the two ground state electrons
are in S = 0 antisymmetric state. The total angular momentum can be 1/2
or 3/2.

It seems worthwhile pointing out that the exchange degeneracy does not
enter into the evaluation of the degeneracy. When the text mentions the
degeneracy, it means ”the degeneracy beyond the exchange one”.

Now we discuss the wave function. We have six degenerate ground states
with wave functions

A |n1x, n1y, n1z, s1z;n2x = 0, n2y = 0, n2z = 0, s2z = 1/2;n3x = 0, n3y = 0, n3z = 0, s3z = −1/2; 〉

where s1z is arbitrary,n1x + n1y + n1z = 1 and A is the projector over the
totally antisymmetric wave function space.

A =
1√
6

(P123 + P312 + P231 − P132 − P213 − P321)

4.6 Exercise 3

Two electrons are subjected to an harmonic oscillator potential

V =
1

2
mω2(r2

1 + r2
2),

r1,2 being the position vectors of the two particles respectively. Let us denote
by L = L1 +L2 the total orbital angular momentum and by S = S1 +S2 the
total spin of the system. Evaluate, to first order in perturbation theory, the
energy level splitting induced by a spin-orbit W = AS ·L for the first excited
level.

Solution:
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The first step is to discuss the unperturbed problem. The wave function
for a single particle is

ψ(1) = ψn1(x)ψn2(y)ψn3(z),

where ψn(x) = CnHn(αx)e−
1
2
α2x2

, Cn =
√

α
π1/22nn!

, α = (mω/h̄)1/2 (see

Konishi-Paffuti, p. 142). The energy is

E = h̄ω(n1 + n2 + n3 +
3

2
).

It is also possible to analzye the problem with eigenstates of the angular
momentum. In particular, the ground state for a single particle has l = 0
while the first excited level for a single particle has l = 1, m = 0,±1.

For a system with two particles the wave function is of the form

ψ(2)(x1,x2) =
∑
i,j

Cijψi(x1)ψj(x2)

where i, j are multi-indexes.
Let us study the ground state. We have two electrons and, therefore, the

total wave function must be antisymmetric. For the ground state we take a
singlet of spin (which is antisymmetric) and a symmetric orbital part. The
wave function for the two electrons has this orbital part:

ψ(2)(x1,x2) = (

√
α√
π

)3e−
mω
2h̄

r2
1(

√
α√
π

)3e−
mω
2h̄

r2
2 ,

where, as we see, both electrons are in a state n = 0. The unperturbed
energy is

E = 2[3h̄ω/2] = 3h̄ω.

To proceed further, let us analyze the first excited level: now we have
one electron in the ground state of single particle and another electron in the
first excited level of single particle. Therefore, the orbital part of the wave
function is given by

ψ(2)
m (x1,x2) =

1√
2
[ψ1,ground(x1)ψ2,m(x2)± ψ1,m(x1)ψ2,ground(x2)],

where m = 0,±1 (it is the magnetic quantum number of l = 1 states), while
the + (−) must be used when the spinorial part of the wave function is a
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spin singlet (triplet). Indeed, here our guideline is to antisymmetrize the
total wave function of the two particles. The energy of the first excited level
is

E = h̄ω(3/2 + 5/2) = 4h̄ω.

Now the unperturbed problem is solved. We can consider the perturba-
tion exploiting time-independent perturbation theory. The perturbation is
a spin-orbit interaction and, therefore, when we compose the spin with the
orbital angular momentum, we will use the basis |L2, S2, J2, Jz〉. It is better
to write the perturbation as

W = AS · L = A
J2 − S2 − L2

2
.

We must diagonalize the perturbation matrix. Indeed, at the first excited
level we have degeneracy and the energy corrections at first order are given
by the eigenvalues of the matrix. We start considering the case m = 1, but
our argument must be repeated analogously also for m = −1 and m = 0.
We have l = 1 while the spin can be zero or one. Consequently, we have the
following degenerate states for m = 1 (remember that the third component
of the angular momentum is additive):
|l = 1, s = 0, j = 1,mj = 1〉,
|l = 1, s = 1, j = 0,mj = 0〉,
|l = 1, s = 1, j = 1,mj = 1〉,
|l = 1, s = 1, j = 1,mj = 0〉,
|l = 1, s = 1, j = 2,mj = 2〉,
|l = 1, s = 1, j = 2,mj = 1〉,
|l = 1, s = 1, j = 2,mj = 0〉.

For m = 0 we have the following degenerate states:
|l = 1, s = 0, j = 1,mj = 0〉,
|l = 1, s = 1, j = 0,mj = 0〉,
|l = 1, s = 1, j = 1,mj = 1〉,
|l = 1, s = 1, j = 1,mj = 0〉,
|l = 1, s = 1, j = 1,mj = −1〉,
|l = 1, s = 1, j = 2,mj = 1〉,
|l = 1, s = 1, j = 2,mj = 0〉.
|l = 1, s = 1, j = 2,mj = −1〉.
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For m = −1 we have the following degenerate states:
|l = 1, s = 0, j = 1,mj = −1〉,
|l = 1, s = 1, j = 0,mj = 0〉,
|l = 1, s = 1, j = 1,mj = 0〉,
|l = 1, s = 1, j = 1,mj = −1〉,
|l = 1, s = 1, j = 2,mj = −2〉,
|l = 1, s = 1, j = 2,mj = 0〉.
|l = 1, s = 1, j = 2,mj = −1〉.

We have a total of 22 degenerate states at the first excited level but,
happily, the perturbation matrix in this basis is already diagonal. For m = 1
we have the eigenvalues: 0, -2A, -A, -A, A, A, A. The cases m = 0,−1 can
be discussed in a similar way.

4.7 Exercise 4

Two identical particles of spin one are subjected to a potential

V =
1

2
mω2(r2

1 + r2
2).

Establish the degeneracy of the first excited state. Evaluate the energy shift
of the levels of the first excited state induced by a perturbation

W = λ(2x1 + 3y1 + 4z1)(2x2 + 3y2 + 4z2).

Solution:
Let us start considering the unperturbed problem. The ground state is

defined by the condition of minimum energy and, hence, both particles have
nx = ny = nz = 0 and the energy of the ground state is:

Eground = 2h̄ω
3

2
= 3h̄ω.

In the first excited state, one of the particles has nx = ny = nz = 0 and
the other one has nx = 1, ny = nz = 0 or nx = 0, ny = 1, nz = 0 or
nx = ny = 0, nz = 1. Hence the energy of the first excited state is

E1 = h̄ω
3

2
+ h̄ω(1 +

3

2
) = 4h̄ω.
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Now it is time to write the wave function. The two particles are identical
bosons and, hence, the total wave function must be symmetric under particle
exchange. As usual, since the hamiltonian does not depend on spin operators,
we factorize the total wave function in a spatial part times a spinorial part. In
order to obtain the symmetry properties of the spinorial part under particle
permutation, we can use the Clebsch-Gordan coefficients (table 1× 1). The
composition of a spin 1 with another spin 1 can give us a total spin 0, 1 or 2.
The Clebsch-Gordan coefficients tell us that the spin 0 state is symmetric,
the spin 1 states are three antisymmetric states and the five spin 2 states are
symmetric.

As far as the spatial part of the wave function is concerned, we have

ψspace =
ψ1,ground(r1)ψ2,first(r2)± ψ1,first(r1)ψ2,ground(r2)√

2
,

where the minus sign must be used with (total) spin 1 states, while the plus
sign must be used with (total) spin 0 and spin 2 states. Since ψfirst can
correspond to the three cases nx = 1, ny = nz = 0 or nx = 0, ny = 1, nz = 0
or nx = ny = 0, nz = 1 we have a total of 9× 3 = 27 unperturbed degenerate
states with energy E1 = 4h̄ω.

Now a brute force calculation would lead to a highly cumbersome cal-
culation. The perturbation is made out of nine terms each one having non
zero matrix elements between different states. However observe that the
perturbation can be written as

W = 29λ(r1u)(r2u)

u ≡ 1√
29

(2, 3, 4)

The energy shift cannot depend on our choiche of reference frame and we
can choose the z axis along the direction of u. In this frame

W = λ′z′1z
′
2

from now on we shall omit the prime to simplify notazion but it is always
assumed that the we are working in this new reference frame. The pertur-
bation doesn’t depend on the spin of the particle therefore |S, Sz〉 will label
nine invariant subspaces six even and three odd under particle spin exchange.
We shall denote by ∣∣∣P1 : n′x, n

′
y, n

′
z;

〉 ∣∣∣P2 : n′x, n
′
y, n

′
z

〉
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the spatial part of the eigenfunctions. The potential raise/lower by one unit
n′z and therefore only the exchange integral contribute

δE = ±λ
′

2

√
h-

mω

(
〈P1 : 0, 0, 1| a†z1

|P1 : 0, 0, 0〉 〈P2 : 0, 0, 0| az2 |P2 : 0, 0, 1〉+

〈P1 : 0, 0, 0| az1 |P1 : 0, 0, 1〉 〈P2 : 0, 0, 1| a†z2
|P2 : 0, 0, 0〉

)
= ±λ′

√
h-

mω

where plus sign apply to symmetric spin states S = 0, 2 and minus sign to
antisymmetric one S = 1. All other matrix elements vanish. We thus have
eighteen levels whose energy is left unchanged, three wich receive a negative
energy shift and nine which receive a positive energy shift. The degeneracy
is only partially lifted.
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