

DIPARTIMENTO DI SCIENZE MEDICHE SEZIONE DI MICROBIOLOGIA E GENETICA MEDICA Coordinatore: Prof. Dario Di Luca http://www.unife.it/medicina/geneticamedica

nttp://www.unire.it/medicina/geneticamedica

GENETICA MEDICA

Dott.ssa Rita Selvatici

Sezione di Genetica Medica

Via Fossato di Mortara 74

Tel. 0532-974474

Email: rita.selvatici@unife.it

PROGRAMMA 2018-19

1. CONCETTI GENERALI DI GENETICA:

- dominanza, recessività, codominanza e allelia multipla
- Modalità di trasmissione ereditaria delle malattie e analisi di pedigree

2. POLIMORFISMI e PERFORMANCE SPORTIVA

- variazioni nell'assetto genotipico di un individuo che si associano a variabilita' del rendimento sportivo
- polimorfismo del gene ACE, dell'angiotensinogeno, del gene alpha-actinin-3 (ACTN3), della miostatina, del gene PPAR.

3. MALATTIE EREDITARIE CON COMPROMISSIONE DEL MOVIMENTO:

distrofinopatie, distonie, corea, parkinson, atassie, mioclonie, tic

- **4. CANALOPATIE:** mutazioni con effetto sulla performance atletica.
- Sindrome del QT lungo; Sindrome di Brugada
- **5. DOPING EMATICO E DOPING GENETICO**: Sostanze e Metodi proibiti, Terapia genica, Doping genetico nello sport.

TESTI CONSIGLIATI:

- Genetica umana e medica di Giovanni Neri, Maurizio Genuardi Editore Edra Masson (€ 41)
- Biologia e genetica di Giacomo De Leo, Enrico Ginelli, Silvia Fasano Edizione Edises (€ 49)
- 3. iGenetica Fondamenti Peter J. Russell, Edizione Edises (€ 58)
- Le Basi Biologiche Della Vita
 Miozzo M., Sirchia S., ..., Prinetti A., Gervasini C.
 Edizione Elsevier (€ 45,00)

ESAME SCRITTO:

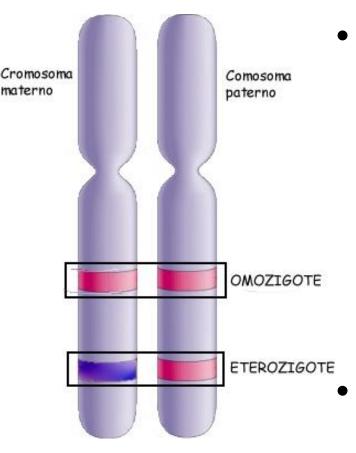
2 domande aperte su argomenti svolti a

lezione:

- Polimorfismi associati alla performance sportiva (polimorfismi dell'enzima ACE, variazioni del gene alpha-actin-3)
- Malattie genetiche con compromissione del movimento (distrofie, distonie, atassie, corea)
- Canalopatie
- Effetti del doping
- Terapia genica
- Doping ematico
- Doping genetico

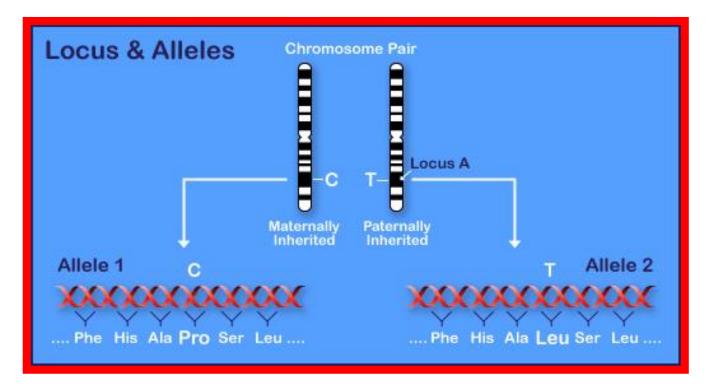
La genetica è la scienza che studia le modalità di trasmissione dei caratteri ereditari

La genetica studia:


- La trasmissione dei geni da una generazione all'altra
- La variazione dei geni che determinano le caratteristiche fisiche ereditarie dell'uomo e di ogni essere vivente

I caratteri ereditari sono determinati dai geni

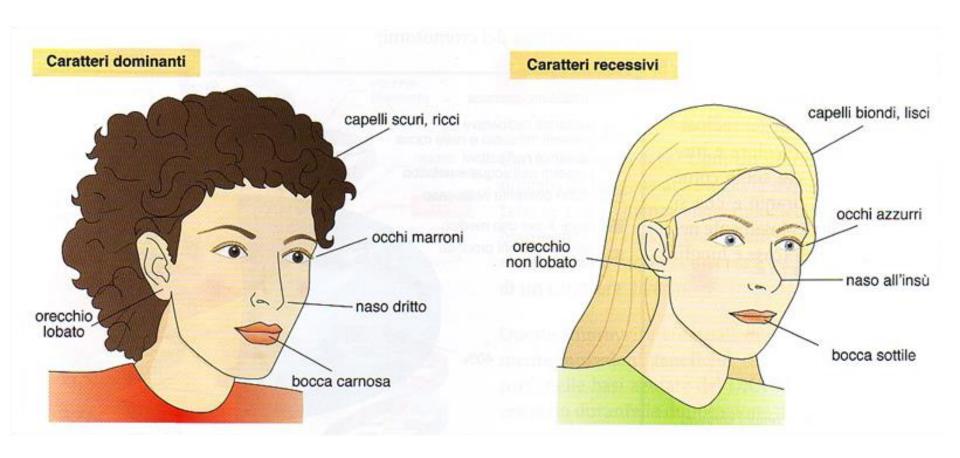
• Un gene è un tratto di DNA che fornisce le istruzioni per formare una determinata proteina.


I geni contengono l'informazione per la sintesi delle proteine e determinano i caratteri ereditari.

Geni e alleli

- Tutti gli individui possiedono una coppia di alleli per ogni carattere ereditario: quando la coppia responsabile di un carattere è formata da alleli identici l'individuo è detto "geneticamente puro" o omozigote.
 - Quando la coppia è formata da alleli diversi l'individuo è detto "misto" o eterozigote

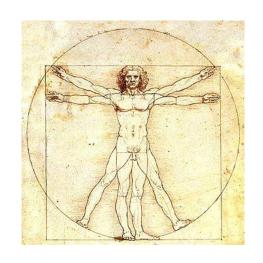
LOCUS-GENE-ALLELE



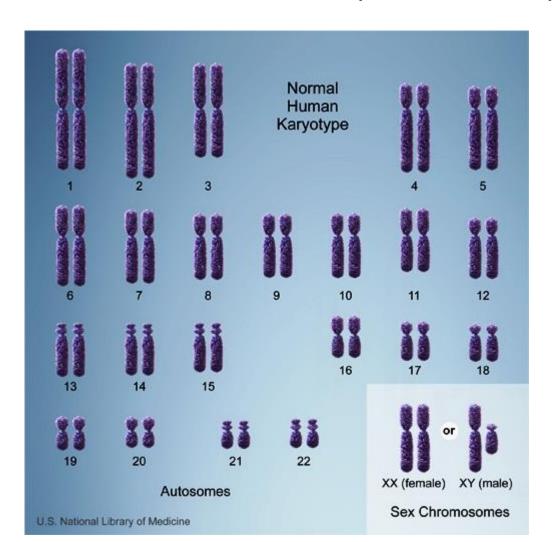
- LOCUS: regione cromosomica unica che corrisponde ad un gene o a qualche altra sequenza di DNA
- ALLELE: una o più forme alternative di un gene o di una sequenza di DNA

Geni e alleli

Se per una determinata caratteristica genetica sono presenti due alleli diversi (eterozigoti), quella che si manifesta nell'individuo viene detta "dominante" mentre quella che non si manifesta è detta "recessiva".


Alleli dominanti e recessivi

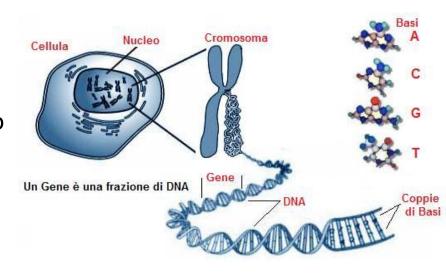
Genotipo e fenotipo


- L'insieme dei geni di un individuo è detto genotipo; quindi il genotipo e tutto quello che si trova nei cromosomi.
- Invece, l'insieme dei caratteri di un individuo è detto fenotipo; quindi il fenotipo è tutto ciò che possiamo osservare di un individuo, come altezza, colore degli occhi, ...

CARIOTIPO

In tutto possediamo 46 cromosomi: 22 coppie di autosomi e 1 coppia di cromosomi sessuali (XX femmine) (XY maschi)

DEFINIZIONI


- Gene = un segmento di DNA che codifica per una proteina o per uno specifico RNA
- •Allele = una forma alternativa di un gene ad uno specifico locus
- •Locus = localizzazione su un cromosoma di un gene o di una specifica sequenza di DNA
- Omozigote = un individuo che possiede due alleli identici ad un determinato locus
- Eterozigote = un individuo che possiede due alleli diversi ad un determinato locus
- Emizigote = un individuo che possiede una sola copia di un gene o di una sequenza di DNA (maschi sono emizigoti per il cromosoma X)

Il gene è costituito da DNA

Ciascun gene controlla un carattere fenotipico

I geni sono localizzati sui cromosomi

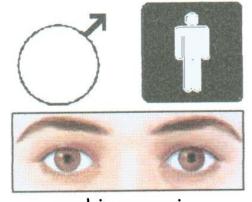
I geni segregano con i cromosomi (meiosi)

Gli esperimenti di Mendel stabilirono i tre principi di base della genetica:

- 1) Alcuni alleli sono dominanti, altri recessivi
- 2) Durante la formazione dei gameti, gli alleli segregano l'uno dall'altro
- 3) Geni indipendenti assortiscono indipendentemente

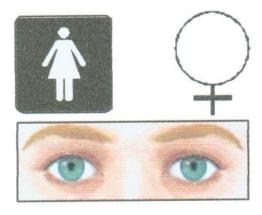
Un allele si trasmette alla discendenza attraverso i gameti

•Durante la meiosi, tutti i cromosomi si separano dai loro omologhi e si dispongono casualmente in gameti differenti.


•Un individuo eterozigote può trasmettere ai suoi figli l'allele dominante **A** o l'allele recessivo **a**.

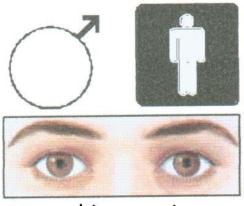
•50% degli spermatozoi/cellule uovo avrà genotipo A e 50% genotipo a.

La trasmissione di un solo carattere

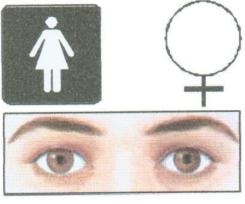

"M" → allele dominante "occhi marroni"

"m" → allele recessivo "occhi azzurri"

Fenotipo: Genotipo:


occhi marroni omozigote MM

occhi azzurri omozigote mm


Tutti i figli saranno eterozigoti Mm

La trasmissione di un solo carattere

Fenotipo: Genotipo:

occhi marroni eterozigote Mm

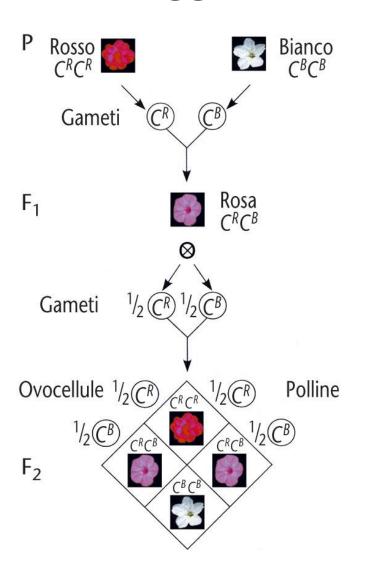
occhi marroni eterozigote Mm

ра	рà
----	----

m

Mm

mm

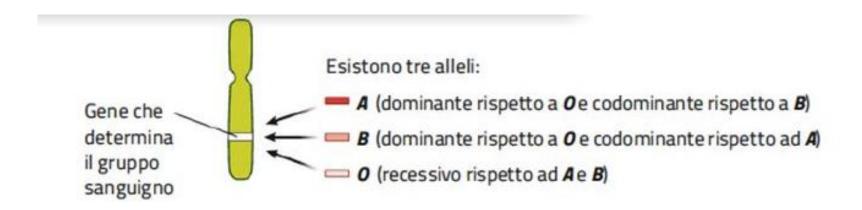

M

M MM mamma Mm

m

I figli saranno per il 75% con occhi marroni e per il 25% con occhi chiari

Le leggi di Mendel non sono sempre valide


1. Dominanza incompleta:
l'eterozigote ha un fenotipo
intermedio tra quello dei due
omozigoti

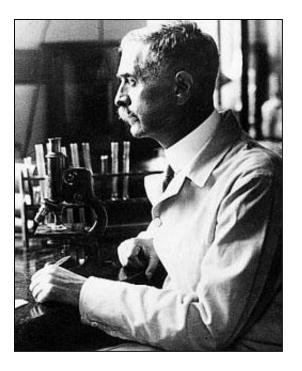
2. Codominanza e Allelia multipla: l'eterozigote ha il fenotipo di entrambi gli omozigoti. Esempio di codominanza e allelia multipla sono i gruppi sanguigni ABO

Alleli multipli

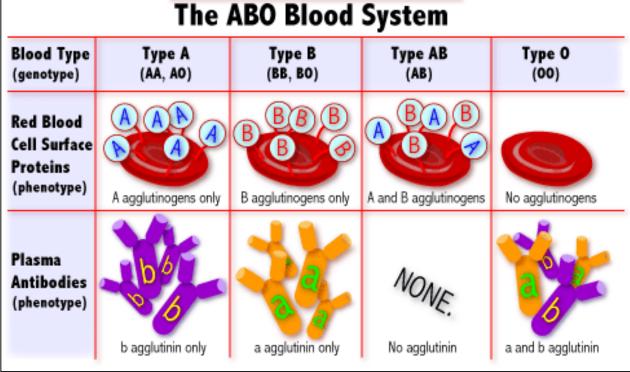
- In generale a determinare un carattere in un organismo intervengono solo due alleli. Tuttavia vi sono molti caratteri controllati da più di due alleli.
- È il caso dei gruppi sanguigni, la cui trasmissione ereditaria è determinata da tre alleli:

ABO.

Genetica del sistema ABO


- ➤ I geni A e B sono codominanti
- il gene 0 (i) è recessivo.

Esistono quindi sei genotipi differenti e solamente quattro fenotipi possibili (A, B, AB e 0).


➤Sono possibili 6 genotipi responsabili dei 4 fenotipi che rappresentano le diverse combinazioni dei 3 alleli (I^A, I^B, i) del sistema AB0:

fenotipo	genotipo	
A	$I^A I^A$	$I^A i$
В	$I_B I_B$	I ^B i
AB	I^AI^B	
O	ii	

1900: Landsteiner scopre i gruppi sanguigni (sistema ABO)

Karl Landsteiner Premio Nobel per la Medicina 1930

Trasmissione ereditaria del gruppo sanguigno

- Il gruppo sanguigno del sistema ABO si trasmette come un carattere mendeliano.
- Nel genoma di ogni individuo ci sono 2 alleli.
- Ogni allele ha 50% di probabilità di essere trasmesso alla prole.

Incrocio tra 2 individui A eterozigote e B eterozigote

P M	A 1/2	0 1/2
B	AB	B0
1/2	1/4	1/4
0	A0	00
1/2	1/4	1/4

Incrocio tra 2 individui entrambi AB

M	A	B
P	1/2	1/2
A	AA	AB
1/2	1/4	1/4
B	AB	BB
1/2	1/4	1/4

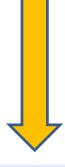
Incrocio tra 2 individui A eterozigote e AB

P M	A 1/2	B 1/2
A	AA	AB
1/2	1/4	1/4
0	A0	B0
1/2	1/4	1/4

Genetica e malattie ereditarie

I principi della genetica si possono applicare al genere umano come a qualsiasi altro essere vivente. Per quanto riguarda l'uomo è importante non solo lo studio della trasmissione dei caratteri normali, ma anche quello delle malattie.

MALATTIE GENETICHE



Mutazioni Genomiche

(n° Cromosomi # 46)

- Cromosomi Autosomici
 - Cromosomi Sessuali

NON compatibili con la vita

Mutazioni Cromosomiche

(Alterazione Struttura Cromosomi)

- Traslocazioni
- Delezioni

EREDITARIE E NON EREDITARIE

Mutazioni Geniche

 Delezioni, Inserzioni, Mutazioni Puntiformi, Espansione di Triplette)

Possono essere EREDITATE in modo :

MENDELIANO:

singolo gene dominate/recessivo, cromosomi sessuali

NON MENDELIANO:

Espansione triplette, mitocondriali

Le mutazioni

Le mutazioni sono variazioni della sequenza nucleotidica del DNA.

Possono essere causate da:

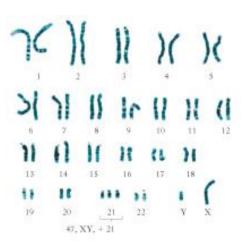
- 1. errori durante la duplicazione del DNA
- 2. esposizione delle cellule ad agenti fisici o chimici (agenti mutageni)

Se la mutazione avviene all'interno di una regione di DNA codificante, possiamo avere una alterazione nella proteina corrispondente e di conseguenza nella funzione svolta dalla proteina stessa

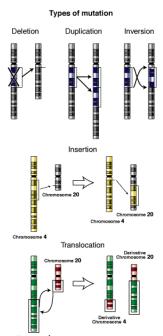
Le Mutazioni sono ereditabili?

Mutazioni somatiche

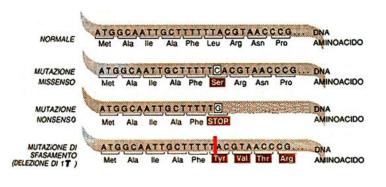
Non ereditabili dalla progenie


<u>Mutazioni germinali</u>

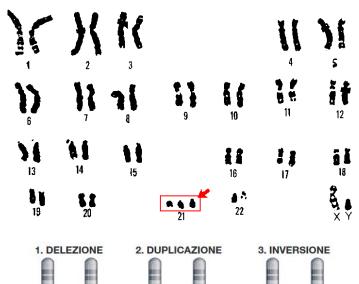
Ereditate dalla progenie

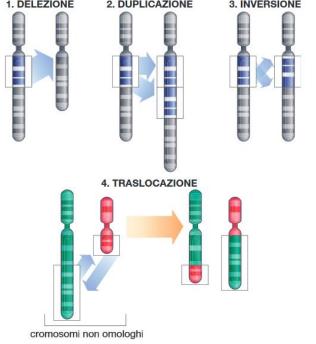

Mutazioni

Mutazione: Una mutazione è un evento casuale e stabile che produce un cambiamento del patrimonio genetico ed è ereditabile quando avviene nei gameti.


Genomiche

Cromosomiche


Geniche

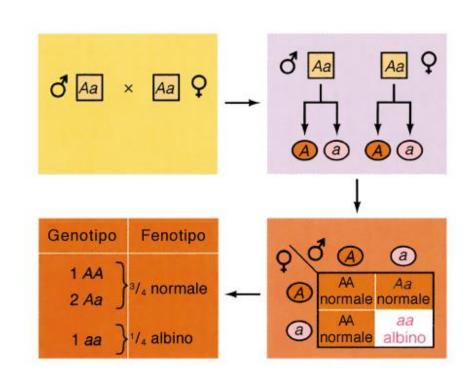


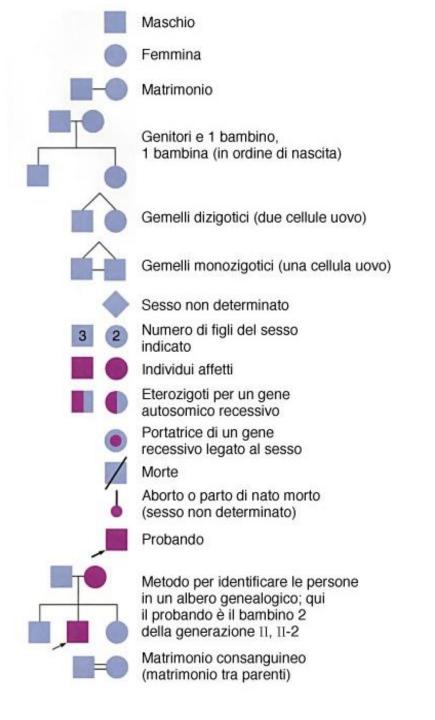
Mutazioni genomiche/cromosomiche

■ cambiamenti nel <u>numero</u> dei cromosomi: trisomie (crom. 21, 18, 13 compatibili con la vita), monosomie (X0), poliploidie (incompatibili con la vita).

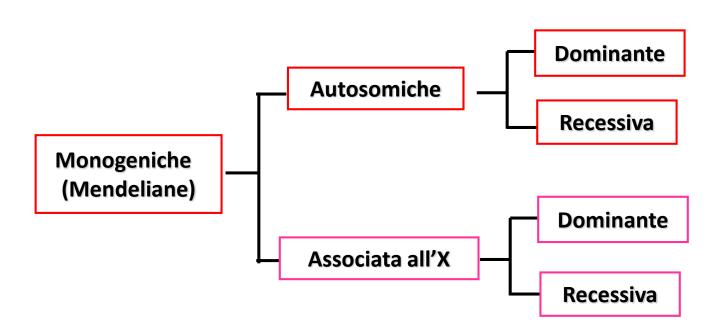
■ cambiamenti nella <u>struttura</u> dei cromosomi: delezioni (Angelman/Prader Willi), duplicazioni , inversioni, traslocazioni (tumori).

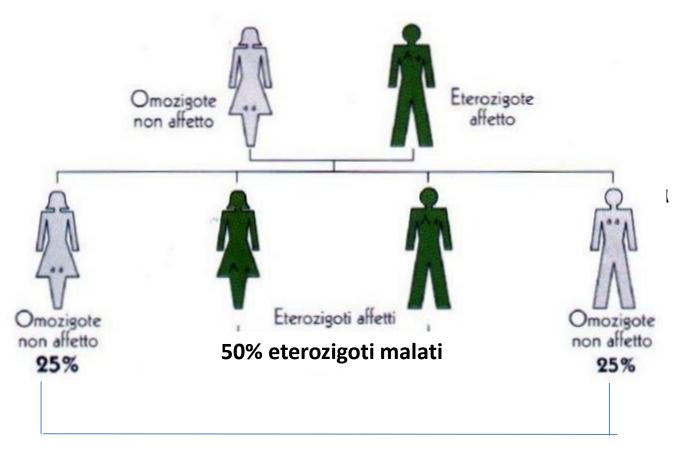
MUTAZIONI GENICHE


Una mutazione genica cambia la sequenza nucleotidica del gene; si tratta di un cambiamento molto piccolo (1 o pochi nucleotidi), e questo è anche detta mutazione puntiforme.

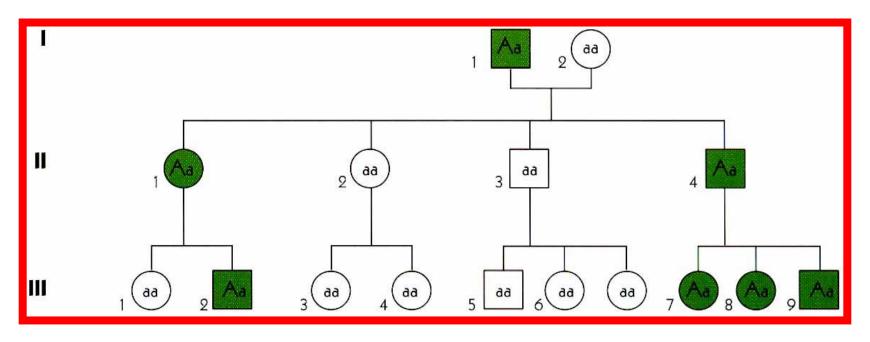

LE MUTAZIONI GENICHE CHE DETERMINANO UNA VARIAZIONE QUANTITATIVA O QUALITATIVA DI UNA PROTEINA POSSONO CAUSARE LA COMPARSA DI UN FENOTIPO PATOLOGICO

La "segregazione" dei caratteri umani

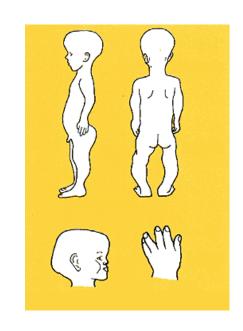

Albino = aa

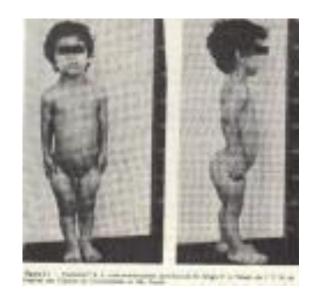

Simboli usati nell'analisi degli alberi genealogici

Classificazione delle malattie monogeniche nell'uomo

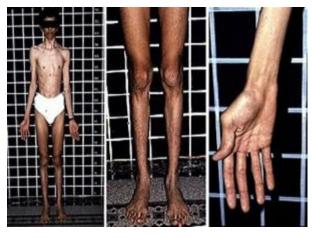

Malattia autosomica dominante

La mutazione è presente nell'allele dominante A...


50% omozigoti sani


Esempio di albero genealogico con le principali caratteristiche di trasmissione autosomica dominante

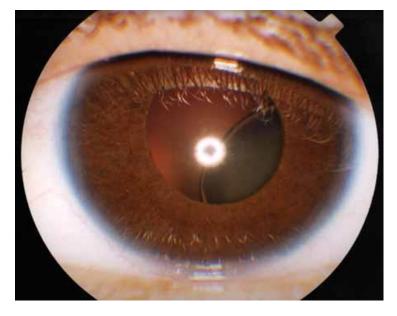
Acondroplasia (nanismo)

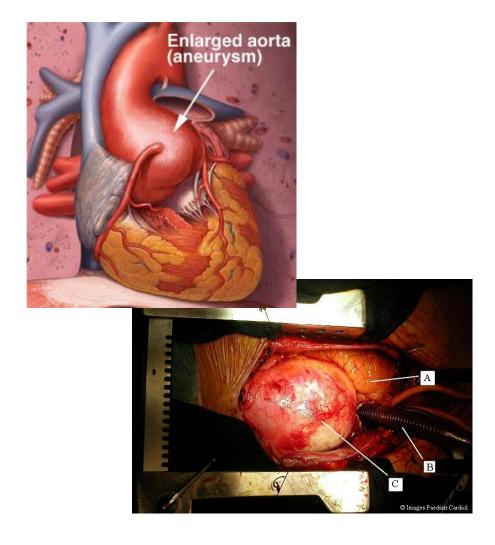

eredità	autosomica dominante
frequenza	1 su 26.000
Descrizione	difetto di crescita che causa proporzioni anormali del corpo: arti corti e tronco normale
ricerca	test prenatale
causa e localizzazione del gene	mutazioni nel gene per un <i>recettore del fattore di crescita per i fibroblasti</i> (FGFR) sul cromosoma 4

Sindrome di Marfan

- •1 su 5.000-10.000 nati vivi
- alterazione del tessuto connettivo
- difetti a carico dello scheletro, cuore e occhi

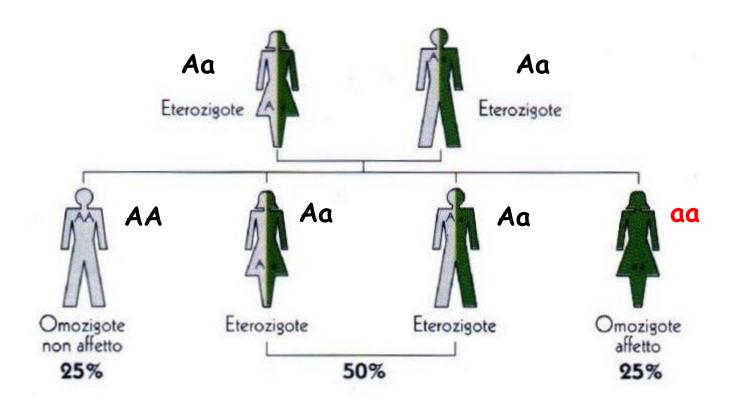
Gene responsabile: **fibrillina 1** (FBN1 sul cromosoma 15q21.1) identificato nel 1992

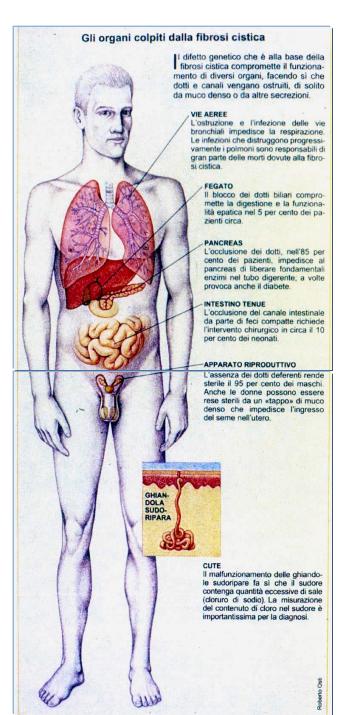



Sindrome di Marfan

Iperlassità legamenti

Lussazione cristallino


Aneurisma aorta ascendente

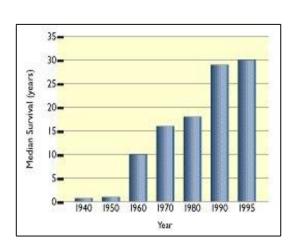

Tabella 3.6 Catalogo di alcune malattie autosomiche dominanti umane

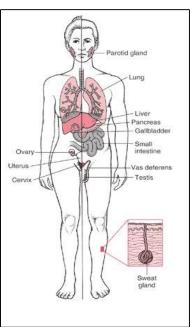
Malattia	Prevalenza	Descrizione
Morbo (malattia) di Huntington	1/10000	Insorgenza tardiva; degenerazione della corteccia cerebrale e dei gangli della base; movimento involontario (corea); demenza
Neurofibromatosi di tipo 1	1/5000	Neurofibromi multipli sui nervi cranici, del collo e del corpo; macchie pigmentate (color caffellatte)
Sclerosi tuberosa	1/5800	Multisistemica; neoformazioni tumorali benigne (amartomi) entro l'encefalo, gli occhi, la cute, i reni, il cuore, i polmoni e lo scheletro
Distrofia miotonica	1/8000	Multisistemica; contrazione muscolare prolungata (miotonia); indebolimento (ipostenia) e perdita (atrofia) variabili del tessuto muscolare; cataratte; conduzione difettosa degli impulsi da parte del cuore; funzione gonadica inadeguata (ipogonadismo)
Malattia policistica del rene (rene policistico)	1/1 000	Geneticamente eterogenea; età di insorgenza variabile; formazioni cistiche renali; diminuzione della capacità di concentrazione del rene (insufficienza renale); ingrandimento renale; ipertensione
Retinite pigmentosa	1/4000	Geneticamente eterogenea; perdita progressiva della visione notturna e dell'acuità visiva
Sindrome di Marfan	1/10000	Multisistemica; allungamento abnorme delle dita delle mani e dei piedi (aracnodattilia); deformità scheletriche; iperlassità legamentosa; spostamento del cristallino rispetto alla posizione normale (ectopia del cristallino); compromissione della visione; disturbi cardiovascolari; curvatura laterale della colonna vertebrale (scoliosi); rottura dell'aorta
Sindrome di Waardenburg	1/100000	Ciocca bianca di capelli; ingrigimento prematuro dei capelli; occhi di differenti colori; sordità
Ipercolesterolemia	1/500	Elevate concentrazioni sieriche di colesterolo; cardiopatia coronarica a insorgenza precoce
Osteogenesi imperfetta	1/10000	Genericamente eterogenea; clinicamente eterogenea; deformità ossea; fragilità ossea; sordità; sclere blu

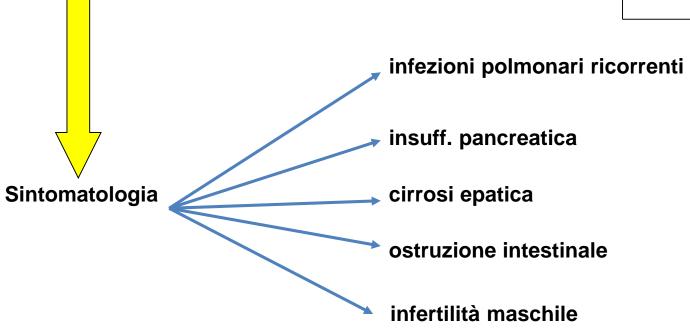
Malattia autosomica recessiva

La mutazione è presente nell'allele recessivo a...

Fibrosi cistica


eredità	autosomica recessiva		
frequenza	1 su 3.300 Caucasici; 1 in 9.500 Ispanici; la frequenza varia nei diversi gruppi etnici		
Descrizione	errore nel <i>canale per il passaggio di ioni cloro</i> che causa un aumento della viscosità del muco nei <i>polmoni</i> e nel <i>pancreas</i> , con coseguenti problemi respiratori e digestivi		
localizzazio ne del gene	Il gene Cystic Fibrosis Transmembrane Regulator (<i>CFTR</i>) è nel cromosoma 7.		
ricerca	test del sudore (salato) alla nascita		
trattamento	Molti trattamenti alleviano i sintomi e aumentano la speranza di vita. Ricerche per la terapia genica fin dal 1993		


Patogenesi della fibrosi cistica


SECREZIONI MUCOSE PARTICOLARMENTE VISCOSE

OSTRUZIONE DEI DOTTI ESCRETORI

EREDITA' MENDELIANA AUTOSOMICA RECESSIVA

- Gli affetti sono generalmente figli di non affetti
- I genitori degli affetti sono portatori asintomatici
- Sono colpiti entrambi i sessi
- E' trasmesso da entrambi i sessi
- C'è aumentata consanguineità tra i genitori
- Dopo la nascita di un affetto, i figli successivi hanno la probabilità del 25% di essere affetti.
- La malattia non si presenta in tutte le generazioni: c'è salto generazionale

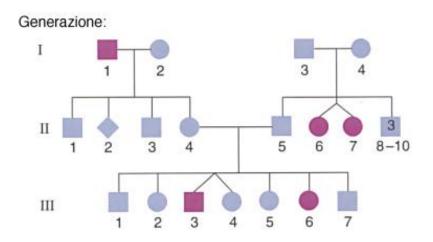
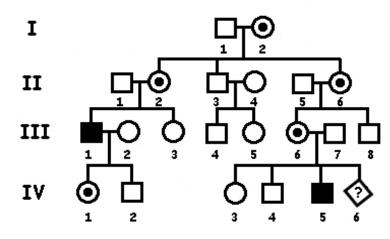


Tabella 3.7 Catalogo di alcune malattie autosomiche recessive umane

Malattia	Prevalenza	Descrizione
Fibrosi cistica	1/2500	Multisistemica; difetto del trasporto degli ioni cloruro nei tessuti epiteliali; blocco dei dotti pancreatici e delle piccole vie respiratorie; pneumopatia di grado elevato; insufficienza pancreatica; infiammazione cronica dei seni nasali (sinusite); sterilità
Ittiosi lamellare	1/25000	Affezione della cute; deturpazione; squame grandi; arrossamento variabile
Malattia di Wilson	1/40000	Epatopatia cronica; compromissione neurologica progressiva; accumulazione di rame nel fegato, nell'encefalo e in altri tessuti
Malattia di Gaucher tipo 1	1/50000	Aumento della degradazione delle cellule ematiche nella milza (ipersplenismo); ingrossamento del fegato e della milza (epatosplenomegalia); fragilità ossea
Atassia di Friedreich	1/50000	Insorgenza nella pubertà; incapacità di coordinare i muscoli per il movimento volontario (atassia); incapacità di parlare (disartria); atrofia muscolare
Atrofia muscolare spinale dell'infanzia	1/10000	Geneticamente eterogenea; variabile; degenerazione delle corna anteriori del midollo spinale; indebolimento (ipostenia) e diminuzione del volume (atrofia) dei muscoli; spesso letale entro 20 anni di età o prima
Fenilchetonuria	1/10000	Deficienza dell'enzima epatico fenilalanina-idrossilasi; danno cerebrale; ritardo mentale; eccesso di fenilpiruvato nell'urina; accumulazione di fenilalanina nel sangue
β-Talassemia	1/20000	Diminuzione di grado elevato degli eritrociti (anemia); ingrossamento della milza (splenomegalia); deformità ossee
Deficienza di galattocinasi	1/40000	Incapacità di utilizzare il galattosio; cataratte; ritardo mentale lieve
Deficienza di α_1 -antitripsina	1/3500	Enfisema polmonare; cirrosi epatica

Eredità X-linked (o Eredità legata all'X o eredità legata al sesso)

Il gene che dà la malattia è trasmesso dal cromosoma X:


- i figli maschi ereditano sempre il loro cromosoma X dalle madri
- le figlie femmine ereditano 1 crom X dalla madre e 1 crom X dal padre

X-Linked dominante

Ci sono sia maschi che femmine affette ma il rapporto maschi:femmine= 1:2
CI SONO IL DOPPIO DELLE FEMMINE AFFETTE

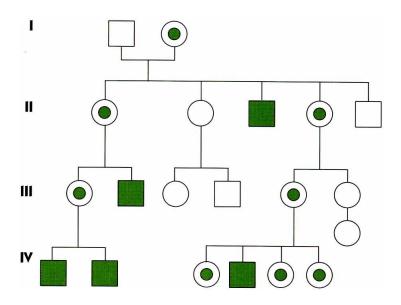
X-Linked recessiva

Solo maschi affetti

EREDITA' X-linked DOMINANTE

- Gli individui maschi affetti generano solo figlie femmine affette e nessun figlio maschio affetto.
- Una femmina eterozigote affetta trasmetterà il carattere a metà dei suoi figli e maschi e femmine ne saranno ugualmente affetti.
- In media, le femmine sono colpite il doppio da queste patologie.
- Un carattere dominante legato all'X può risultare letale nel maschio, mentre le femmine possono tollerarlo a causa dell'inattivazione dell'X.
- Non sono noti moltissimi casi di patologie:

Esempi:

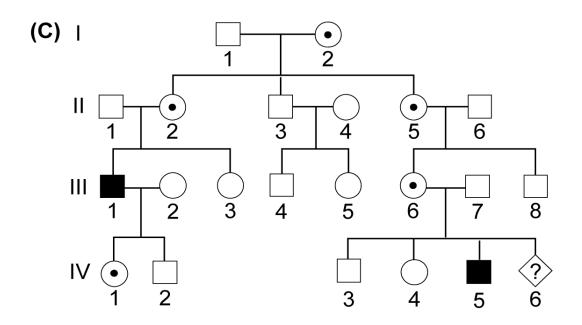

Sindrome di Rett è una malattia neurologica del sistema nervoso centrale, caratterizzata da uno sviluppo apparentemente normale nei primi 6-18 mesi di vita, cui segue un rallentamento dello sviluppo e una regressione delle abilità psicofisiche, con riduzione della capacità di socializzare e comparsa di movimenti stereotipati, soprattutto delle mani. La cuasa sono mutazioni del gene MECP2, localizzato sul cromosoma X.

Rachitismo resistente alla vitamina D: riduzione del riassorbimento renale di fosfato conduce ad un alterato metabolismo osseo ed allo sviluppo di rachitismo.

Condrodisplasia punctata: si presenta con accorciamento asimmetrico degli arti, cataratta e bassa statura.

Eredità X-linked recessiva

- Colpiscono i maschi più delle femmine perché i maschi sono emizigoti per i geni del cromosoma X.
- I maschi affetti ricevono il cromosoma X mutato dalla madre e lo trasmettono a tutte le loro figlie, ma non ai figli maschi.
- Le figlie femmine di maschi affetti sono di solito eterozigoti



Esempi di malattie recessive legate all'X:

Emofilia - malattia ereditaria X-linked recessiva comportante una grave insufficienza nella coagulazione del sangue dovuta alla mancanza, totale o parziale, del "fattore VIII" (emofilia A), o del "fattore IX" (emofilia B)

Daltonismo - incapacità a percepire i colori (del tutto o in parte)

Distrofie muscolari - malattie neuromuscolari a carattere degenerativo, determinate geneticamente e che causano <u>atrofia</u> progressiva della muscolatura scheletrica.

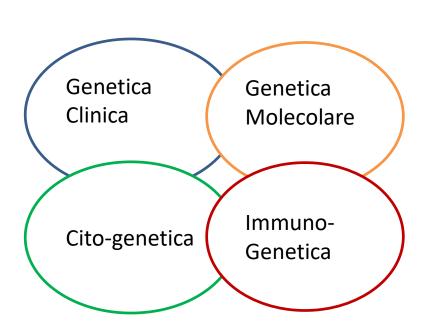
EREDITA' X-LINKED RECESSIVA: solo maschi affetti

Difficoltà nello studio dei caratteri genetici nell'uomo:

- **❖** Non si possono programmare gli incroci
- Il tempo di generazione dello sperimentatore è uguale al tempo di generazione della specie oggetto di studio
- **Le fratrie sono di piccole dimensioni**

Vantaggi

- ❖ Per l'uomo le conoscenze 'mediche' (anatomia, fisiologia, patologia ecc.) sono molto più avanzate rispetto a quelle sugli altri organismi
- Fenotipi molto rari è difficile che sfuggano all'osservazione


CHI STUDIA I CARATTERI GENETICI NELL'UOMO?

La figura professionale che studia la trasmissione dei caratteri nell'uomo è il consulente medico genetista che opera all'interno del servizio di genetica medica

Il Servizio di Genetica Medica

Servizio assistenziale complesso che prevede il coinvolgimento ideale di più figure professionali adeguatamente addestrate:

Medici e Biologi, Tecnici di laboratorio, Infermieri e Personale amministrativo.

Genetica clinica- consulenti genetisti medici per la definizione della diagnosi

Genetica molecolare- genetisti biologi per l'esecuzione di test molecolari e identificazione di geni malattia

CitoGenetica – medici e biologi per lo studio del cariotipo

ImmunoGenetica –biologi per identificazione di aplotipi HLA in associazione alla predisposizione di malattie.

Genetica Medica:

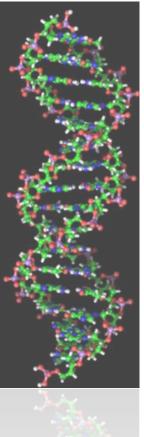
disciplina medica che si occupa della diagnosi delle malattie genetiche e partecipa all'assistenza dei pazienti e dei loro familiari con (i) la definizione della diagnosi, (ii) la stima dei rischi di ricorrenza, (iii) la pianificazione del monitoraggio di future gravidanze e (iv) coadiuvando gli interventi di altri specialisti sugli individui affetti e/o sui familiari

Consulenza genetica

L' obiettivo della consulenza genetica è quello di aiutare il consultante, la coppia o la famiglia a....

comprendere le informazioni mediche, inclusa la diagnosi, la prognosi e le terapie disponibili

rendersi conto del contributo ereditario alla malattia e del rischio di ricorrenza



prendere le decisioni che sembrano appropriate in rapporto al rischio di ricorrenza, ai progetti familiari, agli standard etici e religiosi e ad agire in accordo con queste decisioni

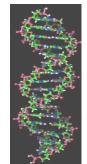
ottenere il miglior possibile adattamento alla malattia (in un soggetto affetto) o al rischio di ricorrenza

Ogni consulenza è un caso a sé, con problematiche diverse legate sia alla patologia sia alla particolare situazione di chi richiede la consulenza

LA CONSULENZA GENETICA

......è un processo informativo attraverso il quale i pazienti affetti da una malattia geneticamente determinata, o i loro familiari, ricevono informazioni relative :

ALLE CARATTERISTICHE DELLA MALATTIA STESSA


ALLE MODALITÀ DI TRASMISSIONE

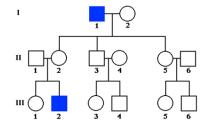
AL RISCHIO DI RICORRENZA

ALLE POSSIBILI TERAPIE, INCLUSE LE OPZIONI RIPRODUTTIVE

La diagnosi precisa della malattia costituisce premessa fondamentale e necessaria per poter effettuare la consulenza genetica.

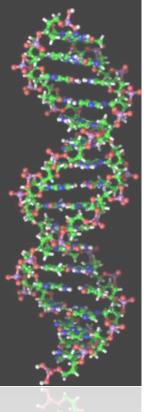
Può essere esclusivamente clinica, ovvero basata sulla valutazione del medico specialista e su dati derivati da indagini strumentali, oppure può richiedere l'impiego di test genetici

FASI DELLA CONSULENZA GENETICA


La consulenza genetica si articola in diverse fasi, che possono richiedere incontri successivi

1. Raccolta delle Informazioni

Viene effettuata tramite l'anamnesi personale e familiare del probando:


- vengono raccolte informazioni precise sui diversi componenti familiari,
- inclusi i familiari deceduti, che si ritiene abbiano avuto la stessa malattia,
- possono essere utili, oltre alle cartelle cliniche e alle varie documentazioni sanitarie, anche fotografie dei familiari deceduti.

2. Ricostruzione Dell'albero Genealogico (Pedigree)

3. Richiesta di VISITE SPECIALISTICHE

vengono richieste dal genetista per confermare o escludere altri eventuali segni della malattia nel probando e nei suoi familiari. Possono essere richiesti anche esami strumentali (RX, TAC o esami di laboratorio) ed ESAMI GENETICI (molecolari e/o citogenetici)

4. CALCOLO DEL RISCHIO

<u>è la possibilità che una condizione patologica a base genetica presente nel probando si verifichi nuovamente in altri membri appartenenti alla stessa famiglia.</u>

Il calcolo del rischio si basa sull'accertamento della modalità di trasmissione della malattia, sui dati strumentali e di laboratorio disponibili e sulla posizione del probando all'interno della famiglia.


Il rischio genetico può essere fornito in termini probabilistici o con un valore percentuale.

5. COMUNICAZIONE

è il momento in cui lo specialista in genetica medica comunica al probando o ai suoi familiari le informazioni ottenute e le possibili conseguenze.

La consulenza non dev'essere mai direttiva e quindi non deve influenzare le possibili decisioni del probando o della famiglia

L'acquisizione dei dati, la comunicazione dei risultati e il sostegno psicologico adeguato, in caso di conferma di malattia genetica, sottolineano come lo specialista in genetica medica abbia la necessità di avvalersi della collaborazione di altri professionisti, medici e non medici, per raggiungere gli obiettivi della consulenza genetica stessa

Tipologie di Consulenza Genetica

- Prenatale
- Neonatale
- Riproduttiva
- Teratologica
- Per Patologie Tumorali
- associata a Test Genetici di Screening