
Searching Text

2

How Strings are Stored

SET ANSI_PADDING { ON | OFF }

• Controls the way SQL Server stores values shorter

than the defined size of the column, and the way the

column stores values that have trailing blanks in

char, varchar, binary, and varbinary data.

• When padded, char columns are padded with blanks,

and binary columns are padded with zeros. When

trimmed, char columns have the trailing blanks

trimmed, and binary columns have the trailing zeros

trimmed.

3

ANSI_PADDING Setting

Setting

char(n) NOT

NULL or

binary(n) NOT

NULL

char(n) NULL

or binary(n)

NULL

varchar(n) or

varbinary(n)

ON

Pad original

value (with

trailing blanks for

char columns

and with trailing

zeros for binary

columns) to the

length of the

column.

Follows same

rules as for

char(n) or

binary(n) NOT

NULL when

SET

ANSI_PADDIN

G is ON.

Trailing blanks in

character values inserted

into varchar columns are

not trimmed. Trailing

zeros in binary values

inserted into varbinary

columns are not trimmed.

Values are not padded to

the length of the column.

4

ANSI_PADDING Setting

Setting

char(n) NOT

NULL or

binary(n) NOT

NULL

char(n) NULL

or binary(n)

NULL

varchar(n) or

varbinary(n)

OFF

Pad original value

(with trailing

blanks for char

columns and with

trailing zeros for

binary columns)

to the length of

the column.

Follows same

rules as for

varchar or

varbinary

when SET

ANSI_PADDIN

G is OFF.

Trailing blanks in

character values

inserted into a varchar

column are trimmed.

Trailing zeros in binary

values inserted into a

varbinary column are

trimmed.

Values are not padded

to the length of the

column.

5

ANSI_PADDING Setting

• The SET ANSI_PADDING setting does not affect the

nchar, nvarchar, ntext, text, image columns. They

always display the SET ANSI_PADDING ON

behavior. This means trailing spaces and zeros are

not trimmed and nchar columns are padded

• ANSI_PADDING should always be set to ON.

6

Example

PRINT 'Testing with ANSI_PADDING ON'

SET ANSI_PADDING ON;

GO

CREATE TABLE t1 (

 charcol CHAR(16) NULL,

 varcharcol VARCHAR(16) NULL,

 varbinarycol VARBINARY(8)

);

GO

INSERT INTO t1 VALUES ('No blanks', 'No blanks', 0x00ee);

INSERT INTO t1 VALUES ('Trailing blank ', 'Trailing blank ', 0x00ee00);

SELECT 'CHAR' = '>' + charcol + '<', 'VARCHAR'='>' + varcharcol + '<',

 varbinarycol

FROM t1;

GO

7

Output

CHAR VARCHAR varbinarycol

------------------ ------------------ ------------------

>No blanks < >No blanks< 0x00EE

>Trailing blank < >Trailing blank < 0x00EE00

(2 row(s) affected)

8

Example

PRINT 'Testing with ANSI_PADDING OFF';

SET ANSI_PADDING OFF;

GO

CREATE TABLE t2 (

 charcol CHAR(16) NULL,

 varcharcol VARCHAR(16) NULL,

 varbinarycol VARBINARY(8)

);

GO

INSERT INTO t2 VALUES ('No blanks', 'No blanks', 0x00ee);

INSERT INTO t2 VALUES ('Trailing blank ', 'Trailing blank ', 0x00ee00);

SELECT 'CHAR' = '>' + charcol + '<', 'VARCHAR'='>' + varcharcol + '<',

 varbinarycol

FROM t2;

GO

9

Output

CHAR VARCHAR varbinarycol

------------------ ------------------ ------------------

>No blanks< >No blanks< 0x00EE

>Trailing blank< >Trailing blank< 0x00EE

(2 row(s) affected)

10

Comparison of Strings

• When you compare character string data, the logical

sequence of the characters is defined by the collation

of the character data.

• The result of comparison operators such as < and >

are controlled by the character sequence defined by

the collation.

11

String Equivalence

• Trailing blanks are ignored in comparisons; for

example, these are equivalent:

WHERE LastName = 'White'

WHERE LastName = 'White '

WHERE LastName = 'White ‘

independently of the type of LastName

12

LIKE

• Determines whether a specific character string

matches a specified pattern.

• A pattern can include regular characters and wildcard

characters. During pattern matching, regular

characters must exactly match the characters

specified in the character string. However, wildcard

characters can be matched with arbitrary fragments

of the character string.

13

Syntax

match_expression [NOT] LIKE pattern [ESCAPE

escape_character]

• match_expression: is any valid expression of

character data type

• pattern: Is the specific string of characters to search

for in match_expression, and can include the

wildcard characters. pattern can be a maximum of

8,000 bytes.

• Returns true if match_expression matches pattern

14

Wildcard Characters

Wildcard

character
Description Example

%
Any string of zero or

more characters.

WHERE title LIKE

'%computer%' finds all book

titles with the word 'computer'

anywhere in the book title.

_ (underscore) Any single character.

WHERE au_fname LIKE '_ean'

finds all four-letter first names

that end with ean (Dean, Sean,

and so on).

15

Wildcard Characters

Wildcard

character
Description Example

[]

Any single character

within the specified

range ([a-f]) or set

([abcdef]).

WHERE au_lname LIKE '[C-

P]arsen' finds author last

names ending with arsen and

starting with any single

character between C and P,

for example Carsen, Larsen,

Karsen, and so on.

[^]

Any single character

not within the specified

range ([^a-f]) or set

([^abcdef]).

WHERE au_lname LIKE

'de[^l]%' all author last names

starting with de and where the

following letter is not l.

16

Syntax

• escape_character: Is a character that is put in front of

a wildcard character to indicate that the wildcard

should be interpreted as a regular character and not

as a wildcard.

• escape_character is a character expression that has

no default and must evaluate to only one character.

17

Unicode Pattern Matching

• LIKE supports ASCII pattern matching and Unicode pattern

matching.

• When all arguments (match_expression, pattern, and

escape_character, if present) are ASCII character data types,

ASCII pattern matching is performed.

• If any one of the arguments are of Unicode data type, all

arguments are converted to Unicode and Unicode pattern

matching is performed.

• When you use Unicode data (nchar or nvarchar data types)

with LIKE, trailing blanks in the expression to be matched are

significant; however, for non-Unicode data, trailing blanks are

not significant.

• Unicode LIKE is compatible with the SQL-92 standard.

18

Example

-- ASCII pattern matching with char column

CREATE TABLE t (col1 char(30));

INSERT INTO t VALUES ('Robert King');

SELECT *

FROM t

WHERE col1 LIKE '% King' -- returns 1 row

19

Example

-- Unicode pattern matching with nchar column

CREATE TABLE t (col1 nchar(30));

INSERT INTO t VALUES ('Robert King');

SELECT *

FROM t

WHERE col1 LIKE '% King' -- no rows returned

-- Unicode pattern matching with nchar column and RTRIM

CREATE TABLE t (col1 nchar (30));

INSERT INTO t VALUES ('Robert King');

SELECT *

FROM t

WHERE RTRIM(col1) LIKE '% King' -- returns 1 row

20

RTRIM

RTRIM (character_expression)

– Returns a character string after truncating all

trailing blanks.

21

Remarks

• When you perform string comparisons by using LIKE,
all characters in the pattern string are significant. This
includes leading or trailing spaces. If a comparison in
a query is to return all rows with a string LIKE 'abc '
(abc followed by a single space), a row in which the
value of that column is ‘abc’ (abc without a space) is
not returned.

• However, trailing blanks, in the expression to which
the pattern is matched, are ignored in ASCII pattern
matching. If a comparison in a query is to return all
rows with the string LIKE 'abc' (abc without a space),
all rows that start with abc and have zero or more
trailing blanks are returned.

22

Remarks

• A string comparison using a pattern that contains

char and varchar data may not pass a LIKE

comparison because of how the data is stored.

23

Example

USE AdventureWorks;

GO

CREATE PROCEDURE FindEmployee @EmpLName char(20)

AS

SELECT @EmpLName = RTRIM(@EmpLName) + '%';

SELECT c.FirstName, c.LastName, a.City

FROM Person.Contact c JOIN Person.Address a ON c.ContactID =

a.AddressID

WHERE c.LastName LIKE @EmpLName;

GO

EXEC FindEmployee @EmpLName = 'Barb';

GO

24

Example

• In the FindEmployee procedure, no rows are returned

because the char variable (@EmpLName) contains

trailing blanks whenever the name contains fewer

than 20 characters.

• Because the LastName column is varchar, there are

no trailing blanks. This procedure fails because the

trailing blanks in the pattern are significant

• However, the following example succeeds because

trailing blanks are not added to a varchar variable.

25

Example

USE AdventureWorks;

GO

CREATE PROCEDURE FindEmployee @EmpLName varchar(20)

AS

SELECT @EmpLName = RTRIM(@EmpLName) + '%';

SELECT c.FirstName, c.LastName, a.City

FROM Person.Contact c JOIN Person.Address a ON c.ContactID =

a.AddressID

WHERE c.LastName LIKE @EmpLName;

GO

EXEC FindEmployee @EmpLName = 'Barb';

26

Output

FirstName LastName City

---------- --

Angela Barbariol Snohomish

David Barber Snohomish

(2 row(s) affected)

27

NOT LIKE

• If preceeded by NOT, LIKE returns true if the match

expression does not match the pattern

28

ESCAPE Characters

• You can search for character strings that include one

or more of the special wildcard characters.

• For example, a sample database contains a column

named comment that contains the text 30%. To

search for any rows that contain the string 30%

anywhere in the comment column, specify a

WHERE clause such as WHERE comment LIKE

'%30!%%' ESCAPE '!'. If ESCAPE and the escape

character are not specified, the Database Engine

returns any rows with the string 30!.

29

ESCAPE Characters

• The character after the escape character is

interpreted literally, not as a wildcard character

30

Full Text Search

• Full-text search allows fast and flexible indexing for

keyword-based query of text data stored in a SQL

Server database.

• In contrast to the LIKE predicate, which only works

on character patterns, full-text queries perform

linguistic searches against this data, by operating on

words and phrases based on the rules of a particular

language.

31

Full Text Search

• The performance benefit of using full-text search can

be best realized when querying against a large

amount of unstructured text data.

• A LIKE query against millions of rows of text data can

take minutes to return; whereas a full-text query can

take only seconds or less against the same data,

depending on the number of rows that are returned

• A full text search uses full text indexes

32

Full Text Indexes

• You can build full-text indexes on columns that

contain char, varchar and nvarchar data.

• Full-text indexes can also be built on columns that

contain formatted binary data, such as

Microsoft Word documents, stored in a

varbinary(max) or image column. You cannot use

the LIKE predicate to query formatted binary data.

33

Full Text Indexes

• To create a full-text index on a table, the table must

have a single, unique not null column.

• For example, consider a full-text index for the

Document table in AdventureWorks in which the

DocumentID column is the primary key column.

• A full-text index indicates that the word "instructions"

is found at word number 24 and word number 44 in

the DocumentSummary column for the row

associated with a DocumentID of 3.

34

Full-text catalog

• A full-text catalog contains zero or more full-text

indexes.

• Full-text catalogs must reside on a local hard drive

associated with the instance of SQL Server.

• Each catalog can serve the indexing needs of one or

more tables within a database.

35

Full-Text Engine

• Full-Text Search in Microsoft SQL Server is powered

by the Microsoft Full-Text Engine for SQL Server

(MSFTESQL). The MSFTESQL service has two

roles, namely indexing support and querying support.

• It is a separate process

36

Word Breakers and Stemmers

• Word breakers and stemmers perform linguistic analysis on all

full-text indexed data.

• Linguistic analysis involves finding word boundaries (word-

breaking) and conjugating verbs and nouns (stemming).

• The rules for this analysis differ for different languages, and you

can specify a different language for each full-text indexed

column.

• Word breakers for each language enable the resulting terms to

be more accurate for that language. If no word breaker is

available for a particular language, the neutral word breaker is

used. With the neutral word breaker, words are broken at neutral

characters such as spaces and punctuation marks.

37

Stemmers

• For a given language, a stemmer generates

inflectional forms of a particular word based on the

rules of that language. Stemmers are language

specific

38

Filters

• When a cell in a varbinary(max), or image column

contains a document with a certain file extension, full-

text search uses a filter to interpret the binary data.

• The filter extracts the textual information from the

document and submits it for indexing.

39

Filters

• Many document types can be stored in a single

varbinary(max), or image column. For each

document type, SQL Server chooses the correct filter

based on the file extension.

• Because the file extension is not visible when the file

is stored in a varbinary(max), or image column, the

file extension must be stored in a separate column in

the table, called a type column.

• This type column can be of any character-based data

type and contains the document file extension, such

as .doc for a Microsoft Word document.

40

Filters

• In the Document table in Adventure Works, the

Document column is of type varbinary(max), and

the FileExtension column is of type nvarchar(8).

• When creating a full-text index on a varbinary(max),

or image column you must identify a corresponding

type column that has the extension information so

that SQL Server knows which filter to use.

41

Building a Full Text Index

• Token: a word or a character string identified by the

word breaker

• The process of building a full-text index is quite

different from building other types of indexes.

• Instead of constructing a B-tree structure based on a

value stored in a particular row, MSFTESQL builds

an inverted index structure based on individual

tokens from the text being indexed.

42

Full-Text Index Structure

• The following excerpt of the Document table in

Adventure Works shows three rows from the table

and two columns, the DocumentID column and the

Title column.

• For this example, we will assume that a full-text index

has been created on the Title column

DocumentID Title

1 Crank Arm and Tire Maintenance

2 Front Reflector Bracket and Reflector Assembly 3

3 Front Reflector Bracket Installation

43

Full Text Index

Keyword ColId DocId Occ

Crank 1 1 1

Arm 1 1 2

Tire 1 1 4

Maintenance 1 1 5

Front 1 2 1

Front 1 3 1

Reflector 1 2 2

Reflector 1 2 5

Reflector 1 3 2

Bracket 1 2 3

Bracket 1 3 3

Assembly 1 2 6

3 1 2 7

Installation 1 3 4

44

Full Text Index

• The Keyword column contains a representation of a

single token extracted at indexing time. Word

breakers determine what makes up a token

• The ColId column contains a value that corresponds

to the particular table and column that is full-text

indexed.

• The DocId column contains the identifier of the

document that contains the Keyword

45

Full Text Index

• The Occ column contains an integer value that

correspond to the relative word offsets of the

particular keyword within that DocId.

46

Full-Text Searching

• To seach full-text use the CONTAINS predicate in the

WHERE clause of a query

• Searching for Specific Word or Phrase (Simple Term)

• Searching for the Inflectional Form of a Specific Word

(Generation Term)

• Performing Prefix Searches

• Querying varbinary(max) and xml Columns

• Searching for Words or Phrases Close to Another

Word or Phrase (Proximity Term)

47

CONTAINS Syntax

CONTAINS ({ column_name | (column_list) | * } ,

 '< contains_search_condition >'
 [, LANGUAGE language_term])

 < contains_search_condition > ::=

 { < simple_term > |

 < prefix_term > |

 < generation_term > }

 | (< contains_search_condition >)

 { < AND > | < AND NOT > | < OR > }

 <contains_search_condition > } [...n]

48

CONTAINS Syntax

• { column_name | (column_list) | * } indicate in which

column to search

• < simple_term > ::= word | " phrase "

– Specifies a match for an exact word or a phrase.

Examples of valid simple terms are "blue berry",

blueberry, and "Microsoft SQL Server".

– Phrases should be enclosed in double quotation

marks ("").

– Words in a phrase must appear in the database in

the same order as specified in

<contains_search_condition>.

49

Simple Term

– The search for characters in the word or phrase is

not case sensitive.

– Noise words (such as a, and, or the) in full-text

indexed columns are not stored in the full-text

index. If a noise word is used in a single word

search, SQL Server returns an error message

indicating that the query contains only noise

words.

– Punctuation is ignored. Therefore,

CONTAINS(testing, ‘"computer failure“’) matches

a row with the value, "Where is my computer?

Failure to find it would be expensive."

50

Example of Searching for a Simple Term

• If you want to search the ProductReview table in the

AdventureWorks database to find all comments

about a product with the phrase "learning curve", you

could use the CONTAINS predicate as follows.

SELECT Comments

FROM Production.ProductReview

WHERE CONTAINS(Comments, ' "learning curve" ');

GO

51

Example

SELECT Name, ListPrice

FROM Production.Product

WHERE ListPrice = 80.99

 AND CONTAINS(Name, 'Mountain');

GO

52

Example

SELECT Name

FROM Production.Product

WHERE CONTAINS(Name, ' "Mountain" OR "Road" ')

GO

53

Prefix Term

< prefix term > ::= { "word * " | "phrase *" }

• All entries in the column that contain text beginning

with the specified prefix will be returned.

• For example, to search for all rows that contain the

prefix top-, as in topple, topping, and top itself, the

query looks like this

SELECT Description, ProductDescriptionID

FROM Production.ProductDescription

WHERE CONTAINS (Description, ' "top*" ');

GO

54

Performing Prefix Searches

• When the prefix term is a phrase, each token making

up the phrase is considered a separate prefix term.

All rows that have words beginning with the prefix

terms will be returned. For example, the prefix term

"light bread*" will find rows with text of either "light

breaded," "lightly breaded," or "light bread", but will

not return "Lightly toasted bread".

55

Generation Term

• < generation_term > ::= FORMSOF ({ INFLECTIONAL |

THESAURUS } , < simple_term > [,...n])

– Specifies a match of words when the included simple terms

include variants of the original word for which to search.

56

Generation Term

– INFLECTIONAL

• Specifies that the language-dependent stemmer is to be

used on the specified simple term. The column language

of the column(s) being queried is used to refer to the

desired stemmer. If language_term is specified, the

stemmer corresponding to that language is used.

– THESAURUS

• Specifies that the thesaurus corresponding to the column

full-text language, or the language specified in the query

is used.

• All synonyms associated with the search term are

identified, and searched in the column

57

Example of Searching for a Generation Term

• You can search for all the different tenses of a verb

or both the singular and plural forms of a noun.

• For example, the query shown in this topic searches

for any form of "foot" ("foot", "feet", and so on) in the

Comments column of the ProductReview table.

SELECT Comments, ReviewerName

FROM Production.ProductReview

WHERE CONTAINS (Comments,

'FORMSOF(INFLECTIONAL, "foot")');

GO

58

Querying varbinary(max) and xml Columns

• When a varbinary(max) or an xml column

participates in a full-text index, the full-text service

looks at the extensions of the documents contained

in the varbinary(max) column and applies a

corresponding filter to interpret the binary data and

extract the textual information needed for full-text

indexing and querying. For an xml column, the xml

filter is applied.

• Once indexed, the varbinary(max) or xml column

can be queried like any other column in a table, using

the predicates CONTAINS

