An economic perspective on technological transitions related to energy and climate change

Presentation to the Conference
‘Environment and Energy Innovations in Economic Dynamics’

Paul Ekins
Professor of Energy and Environment Policy
King’s College London, Department of Geography

Thursday 21st May, 2009
Accademia Nazionale dei Lincei, Rome
Structure of presentation

• Technological transitions
 • What are they?
 • How do they come about?

• Technological transitions, energy and climate change
 • Why do we need one?
 • What sorts of technologies/changes will be involved?
 • What might a 2050 energy system look like (after a technological transition)?

• How might a low-carbon technological transition be brought about?
What is a technological transition?

• A technological transition is a process whereby a pervasive technological system in a society undergoes fundamental change
 • Pervasive: is important for basic societal functioning
 • System: involves more than one technology, usually with elements of infrastructure
 • Fundamental: the functioning of society is greatly altered
• Examples
 • Sailing ships to steam ships
 • Horse-drawn to horse-less carriages (i.e. Cars)
 • Advent of disruptive technologies
 – Electricity
 – Information and communication technologies
• Low-carbon energy system?
How does a technological transition come about?

Two examples of theories:

• Multi-level system change involving niches, regimes, landscapes (Geels)

• Alignment/co-evolution of social sub-systems (Freeman & Louca)
Technological regimes

• Regime stability/’lock-in’: learning by using; network externalities; economies of scale; increasing informational returns; deployment of complementary technologies (Arthur 1988, p.591)

• Change in socio-technical configuration (Geels 2002, pp.94-5)
 • Economics: price, performance, user preferences
 • Sociology: actors, interactions, institutions, context (also related to existing technology/socio-technical configuration)
 • Socio-technical: large technical systems, networks
Technological transitions - Geels

• Interactions between three levels
 • Landscapes: strong, underlying features of ideology, culture, value systems and policy (e.g. role of state market, ideas of justice/fairness; change slowly
 • Socio-technical regimes: interlocking structures of technologies, infrastructures, social practices and behaviours; stable, because of ‘lock-in’
 • Niches: small markets or protected spaces in which new technologies develop – or not; most niches remain just that, and ultimately disappear
• Under certain conditions niches can destabilise and ultimately displace a socio-technical regime
The development of niches

(Geels 2002a, Figure 3.6, p.110, 2005)

Landscape developments

Socio-technical regime

- Markets, user preferences
- Science
- Policy
- Culture
- Technology

Socio-technical regime is ‘dynamically stable’. On different dimensions there are ongoing processes.

New technology breaks through, taking advantage of ‘windows of opportunity’. Adjustments occur in socio-technical regime.

Elements are gradually linked together, and stabilise around a dominant design. Internal momentum increases.

Technological niches

Learning processes with novelties on multiple dimension. Different elements are gradually linked together.

Time
Co-evolution of social sub-systems – Freeman and Louca

• Need for co-evolutionary alignment between different interacting sub-systems (Freeman & Louca 2001)
 • Science, technology, economy, politics, culture: application to Kondratiev cycles

• The Physical Dimension, which deals with the physical issues involved in the production/storage/distribution/end use of the good or service under consideration, and has the following components:
 • Science the physically possible
 • Technology physical realisation of the physically possible
 • Infrastructure physical (including technical) support and diffusion of the physical realisation

• The Socio-Economic Dimension, which deals with the interests and drivers that push technical change along: entrepreneurs (and profits), consumers (and preferences), and public policy pressures, and has the following components:
 • Economics issues of allocation, distribution, competition
 • Institutions legal, financial, regulatory, planning frameworks
 • Political Drivers social perceptions driving political priority (security of supply, environmental issues) and the planning system, and the policy instruments through which these perceptions are implemented
 • Culture social perceptions driving social acceptability, consumer demand
Technological transitions, energy and climate change - why do we need one?

- Avoiding ‘dangerous anthropogenic climate change’
 - Pre-industrial CO₂ concentrations: 280 ppm
 - Current CO₂ concentrations: 380 ppm
 - Current GHG (CO₂e) concentrations: 430 ppm
 - Rate of GHG concentration increase: 2.5 ppm p.a.
 - Current global average temperature increase since 1900: 0.7°C
 - Target temperature increase for ‘acceptable’ climate change: 2°C
 - Probability that this will be exceeded at 450ppm: 80%
The climate implications of where we’re headed: The next 100 years compared to the last 400

Continuation of recent trends (middle of band) leads by 2100 to temperatures not reached since the Eocene (25-35 million years ago), when sea level was 20-30 m higher.

Source: Professor John Holdren, Harvard University
Emissions scenario to limit temperature change

Fossil fuel related emissions: BAU and emission abatement scenario (GtCO2)

Source: Stern Review, Part III, Chapter 9
The necessary improvements in carbon productivity

- Carbon productivity = GDP/carbon; carbon intensity = carbon/GDP
- Carbon intensity of energy = carbon/energy
- Carbon emissions = Population * GDP/capita * carbon/GDP
- To reduce carbon emissions, reduce either carbon intensity of energy or energy intensity of GDP or both
- To achieve 450ppmv atmospheric concentration of CO₂, assuming ongoing economic and population growth (3.1% p.a. real), need to increase carbon productivity by a factor of 10-15 by 2050, or approx. 6% p.a.
- Compare current increase in carbon productivity of 0% p.a. over 2000-2006, i.e. global carbon emissions rose at 3.1% p.a.; also
- Compare 10-fold improvement in labour productivity in US over 1830-1955, must achieve the same factor increase in carbon in 42 years
What sorts of technologies/changes will be involved – the Socolow ‘wedges’
Potential “wedges”: cuts of 1Gt of carbon per year in 2054

- **Efficient vehicles:** Increase fuel economy for 2 billion autos from 30 to 60 mpg.
- **Nuclear:** Tripling of capacity to 1050 Gwatts.
- **Gas for coal substitution:** 1400 Gwatts of electricity generation switched from coal to gas.
- **Carbon capture and storage:** Introduce CCS at 800 Gwatt coal stations
- **Wind power:** 50 times as much wind power as at present.
- **Solar PV:** 700 times 2004 capacity
- **Hydrogen:** Additional 4000 Gwatts of wind capacity or additional CCS capacity
- **Biomass fuel:** 100 times the current Brazilian ethanol production

Source: Professor Robert Socolow “Stabilisation Wedges”
What might a 2050 energy system look like (after a technological transition)?

UK CO$_2$ emissions under scenarios with different carbon constraints
What might a 2050 energy system look like (after a technological transition)?

Sectoral CO₂ emissions in years 2000, 2035, 2050 in different scenarios
What might a 2050 energy system look like (after a technological transition)?

Final energy demand under different carbon constraints
What might a 2050 energy system look like (after a technological transition)?

Electricity generation mix under different carbon constraints
What might a 2050 energy system look like (after a technological transition)?

Sectoral biomass under different carbon constraints

Energy 2050 – www.ukerc.ac.uk
How might a low-carbon technological transition be brought about?

• An unprecedented policy challenge: the Stern Review Policy Prescription
 • Carbon pricing: carbon taxes; emission trading
 • Technology policy: low-carbon energy sources; high-efficiency end-use appliances/buildings; incentivisation of a huge investment programme
 • Remove barriers to and promote behaviour change: take-up of new technologies and high-efficiency end-use options; low-energy (carbon) behaviours (i.e. less driving/flying/meat-eating/lower building temperatures in winter, higher in summer)
The (micro)economic cost: global cost curve for greenhouse gas abatement

Cost evolution and learning rates for selected technologies

Source: IEA, 2000, Stern Review, Chapter 9
Policies for carbon reduction

• Huge policy innovation over the last ten years; we know what to do
• Limited results from these policies; we don’t apply the policies hard enough
• Carbon emissions still rising in most industrial (let alone developing) countries
• Many policies need local implementation/enforcement
• (Much) More stringent application of policy instruments (especially price-based to avoid rebound effects)
• Political feasibility
• Implications for economic growth
The macro-economic costs of climate change mitigation

• Optimists:
 • ‘Costs’ are really investments, can contribute to GDP growth
 • Considerable opportunity for zero-cost mitigation
 • A number of low-carbon technologies are (nearly) available at low incremental cost over the huge investments in the energy system that need to be made anyway
 • ‘Learning curve’ experience suggests that the costs of new technologies will fall dramatically
 • Climate change policies can spur innovation, new industries, exports and growth

• Pessimists:
 • Alternative energy sources are more expensive, are bound to constrain growth
 • Cheap, concentrated energy sources are fundamental to industrial development
Scatter plot of model cost projections, 2000-2050

Each point refers to one year’s observation from a particular model for changes from reference case for CO2 and the associated change in GDP (from four sources, for periods over 2000-2050)

- IMCP with ITC dataset
- post-SRES dataset
- WRI dataset (USA only)
- EMF-21 with multigas
Policy conclusions

- Attaining the 2°C target or anything near it will require huge investments in low-carbon technologies right along the innovation chain (research, development, demonstration, diffusion).

- IEA ETP estimates of additional investment needs in energy sector: USD 45 trillion (1.1% global GDP from now until 2050)
 - Buildings and appliances: USD 7.4 trillion; Power sector: USD 3.6 trillion
 - Transport sector: USD 33 trillion; Industry: USD 2.5 trillion

- Government funding of R,D&D must increase dramatically, but demonstration and diffusion can only be driven at scale by markets

- This will require high (now) and rising carbon prices over the next half century, to choke off investment in high-carbon technologies (e.g. runways) and incentivise low-carbon investments

- These high carbon prices will also greatly change lifestyles and consumption patterns

- Provided that the world goes cooperatively in this direction, there are enormous profits to be made from these high carbon prices and changing consumption patterns

- Technological and policy uncertainty mean that the risks are also high
Overall conclusions

• The innovation potential exists for a transition to a low-carbon energy system to be technologically feasible, economically feasible

BUT

• It requires sustained, wide-ranging, radical policy interventions to bring about technological revolution and change lifestyles.
• These interventions are resisted by affected economic sectors (e.g. energy) and households who want to keep current lifestyles (e.g. transport), or attain Western lifestyles
• Politicians may not be able to bring about a low-carbon technological transition before runaway climate change