#### Game theory for business strategy

#### GT for Business strategy

- Given that each firm is part of a complex web of interactions, any business decision or action taken by a firm impacts multiple entities that interact with or within that firm, and vice versa.
- Ignoring these interactions could lead to unexpected and potentially very undesirable outcomes.

#### **Decision theory**



#### Game Theory



#### Game theory

- ... a collection of tools for predicting outcomes of a group of <u>interacting agents</u> where an action of a single agent <u>directly affects the payoff of other participating agents</u>.
- ... the study of multiperson decision problems. (Gibbons )
- ... a bag of analytical tools designed to help us understand the phenomena that we observe when decision-makers interact. (Osborne and Rubinstein )
- ... the study of mathematical models of conflict and cooperation between intelligent <u>rational</u> (self interested) decision-makers. (Myerson )

#### The Game

1. The <u>players</u> who are involved.

2. The <u>rules of the game that specify the sequence</u> of moves as well as the possible actions and

information available to each player whenever they move. (<u>strategies</u>)

3. The <u>outcome</u> of the game for each possible set of actions.

4. The (expected) payoffs based on the outcome.

### Different games

- Non cooperative
- Cooperative
- Game with complete information
- Game with incomplete information (auction/ sealed bid – you don't know how valuable is a good for other bidders)
- Game with perfect information (chess bargaining)
- Game with imperfect information
- Zero (costant) sum game (divide a pie)
- Non zero sum game
- Static game
- Dynamic game

#### Nash equlibrium

**Definition 6** A Nash Equilibrium (NE) is a profile of strategies  $(s_i^*, s_{-i}^*)$  such that each player's strategy is an optimal response to the other players' strategies:

 $\pi_i(s_i^*, s_{-i}^*) \ge \pi_i(s_i, s_{-i}^*)$ 

### Static game – complete information (prisoner's dilemma)

Prisoner 2





#### Normal form



Game tree



# Static game – complete and imperfect information

S1, given a S1 b – T2

T2

S1

T1

| a\b | <b>T1</b> | T2  |
|-----|-----------|-----|
| S1  | 6,4       | 3,5 |
| S2  | 5,3       | 2,2 |



#### Equilibrium?

| S1T1 | NO given a S1 | b – |
|------|---------------|-----|
| S1T2 | NE given b T2 | a – |
| S2T1 | NO given b T1 | a – |
| S2T2 | NO given a S2 | b – |

#### **Dominated stategies**

| a\b | <b>T1</b> | <b>T2</b> | <b>T3</b> |
|-----|-----------|-----------|-----------|
| S1  | 3,4       | 0,4       | 4,-2      |
| S2  | 4,2       | 1,1       | -1,1      |

Step 1a doesn't have dominated strategiesStep 2B – T3 is dominated (T1 always better)Step 3Without T3 for a S1 is a dominated strategyNE S2T1

## Battle of sexs: going to the Opera or to a soccer game?

| M\F | S   | 0   |
|-----|-----|-----|
| S   | 5,4 | 1,1 |
| 0   | 0,0 | 4,5 |

### We have 2 NE – we need another criterium to decide

#### Mix strategies



### No NE in pure strategies

| a\b    | (β)<br>L | (1-β)<br>R |
|--------|----------|------------|
| (α) Α  | 0,0      | 0,-1       |
| (1-α)B | 1,0      | -1,3       |

NE in Mixed strategies  $E\pi a(\alpha^*, \beta^*) \ge E\pi a(\alpha, \beta^*)$  $E\pi b(\alpha^*, \beta^*) \ge E\pi a(\alpha^*, \beta)$ 

#### solution

a – supposes b plays L prob.  $\beta$  and R prob (1- $\beta$ )

```
Eπa(A) = 0 x \beta + 0 (1- \beta) = 0
Eπa(B) = 1 x \beta + (-1) (1- \beta) = 2\beta -1
When is a indifferent?
Eπa(A)= Eπa(B) => 0=2\beta -1 => \beta=1/2
If \beta>1/2 a plays B if \beta<1/2 a plays A
```

The same for B b - supposes a plays A prob. A and B prob. (1-  $\alpha$ )

```
Eπb(L) = 0 x α + 0 (1- α) = 0
Eπb(R) = (-1) x α + 3(1- α) = 3-4 α
When is a indifferent?
Eπb(L)= Eπb(R) => 0= 3-4 α => α=3/4
If α >3/4 b plays L if α <3/4 a plays R
```



NE in mix strategies a => (A prob <sup>3</sup>/<sub>4</sub>, B prob <sup>1</sup>/<sub>4</sub>) B=> (L prob <sup>1</sup>/<sub>2</sub>, R prob <sup>1</sup>/<sub>2</sub>)

## Dynamic game with complete and perfect information

a first move b has 4 strategies

| a\b | T1T1 | T1T2 | T2T1 | T2T2 |
|-----|------|------|------|------|
| S1  | 6,4  | 6,4  | 3,5  | 3,5  |
| S2  | 5,3  | 2,2  | 5,3  | 2,2  |



(S1, T1T2) NE no sub game perfect (S2, T2T1) NE SGP If B first

| a\b   | <b>T1</b> | T2  |
|-------|-----------|-----|
| S1,S1 | 6,4       | 3,5 |
| S1,S2 | 6,4       | 2,2 |
| S2,S1 | 5,3       | 3,5 |
| S2,S2 | 5,3       | 2,2 |

NE (T2, S1S1) SGP (T1, S1S2) no SGP (T2, S2S1) no SGP



# Game with incomplete information (static)

- A new CEO has been hired. He can be good or bad
- There is CFO close to retirement and is tired, he prefers not to work hard
- But if CEO detect him he doesn't get the annual bonus
- CEO good meand higher profits and lower cost effort to control CFO
- CEO = A CFO = B
- I have 2 games

|    | G000 |       |    | Bad |
|----|------|-------|----|-----|
|    | W    | NW    |    | W   |
| С  | 5;2  | 4;1   | С  | 4,2 |
| NC | 6;2  | 3,5;3 | NC | 5,2 |

- How can I find an Equlibrium?
- I change the Game in one with complete but imperfect information



- E payoff B (W,p) = p(2) + (1-p)2=2
- E payoff B(NW,p) =(1-p)3 + p(1) = 3-2p
- $2=3-2p \Rightarrow p=1\2$  if p<1/2 low probability to be detected
- =>[NW,(C,NC)] B doesn't work and A control if is Good
- if P>1/2 [W,(NC,NC)] B work and A doesn't control (Bayesian NE)

#### **Repeated Prisoner's dilemma**

| a\b | Lb    | Hb   |
|-----|-------|------|
| La  | 10;10 | 1;11 |
| На  | 11;1  | 3;3  |

T is a dominated strategy

Play 2 times

First NE (M both games)

Other: first period play P and second

M if you in the first P otherwise T)

- Pay off if no deviations (10+3) (10+3)
- If deviation (12+1) 10(1+1 ) non

convinient

But not SGP, not credible

NE (Ha;Hb) Max profit (La,Lb) How to increase profit? Change game

| a\b | Lb    | Hb   | R   |
|-----|-------|------|-----|
| La  | 10;10 | 1;11 | 0,0 |
| На  | 11;1  | 3;3  | 1,0 |
| R   | 0,0   | 0,1  | 0,0 |

#### Other solutions?

- To play the game N times? NO. In the last period someone will deviate
- To play infinitely? Not T is credible
- a 10,10,10,10,10,....1,0,0,0,0,0,....
- b 10,10,10,10,10,....11,1,1,1,1,1,....
- We need to compare profit today and tomorrow.
- Caveat: it is not renegotiation proof.