Game theory for business strategy

GT for Business strategy

- Given that each firm is part of a complex web of interactions, any business decision or action taken by a firm impacts multiple entities that interact with or within that firm, and vice versa.
- Ignoring these interactions could lead to unexpected and potentially very undesirable outcomes.

Decision theory

Game Theory

Game theory

- ... a collection of tools for predicting outcomes of a group of interacting agents where an action of a single agent directly affects the payoff of other participating agents.
- ... the study of multiperson decision problems. (Gibbons)
- ... a bag of analytical tools designed to help us understand the phenomena that we observe when decision-makers interact. (Osborne and Rubinstein)
- ... the study of mathematical models of conflict and cooperation between intelligent rational (self interested) decision-makers. (Myerson)

The Game

1. The players who are involved.
2. The rules of the game that specify the sequence of moves as well as the possible actions and information available to each player whenever they move. (strategies)
3. The outcome of the game for each possible set of actions.
4. The (expected) payoffs based on the outcome.

Different games

- Non cooperative
- Cooperative
- Game with complete information
- Game with incomplete information (auction/ sealed bid - you don't know how valuable is a good for other bidders)
- Game with perfect information (chess - bargaining)
- Game with imperfect information
- Zero (costant) sum game (divide a pie)
- Non zero sum game
- Static game
- Dynamic game

Nash equlibrium

Definition 6 A Nash Equilibrium (NE) is a profile of strategies $\left(s_{i}^{*}, s_{-i}^{*}\right)$ such that each player's strategy is an optimal response to the other players' strategies:

$$
\pi_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq \pi_{i}\left(s_{i}, s_{-i}^{*}\right)
$$

Static game - complete information (prisoner's dilemma)

Prisoner 2

Cooperate (C) Defect (D)

	C	$-1,-1$	$-9,0$
	D	$0,-9$	$-6,-6$

Normal form

Game tree

Static game - complete and imperfect information

Dominated stategies

$$
\begin{array}{c|c|c|c}
\hline \text { a\b } & \text { T1 } & \text { T2 } & \text { T3 } \\
\hline \text { S1 } & 3,4 & 0,4 & 4,-2 \\
\hline \text { S2 } & 4,2 & 1,1 & -1,1
\end{array}
$$

Step 1 a doesn't have dominated strategies Step 2 $\mathrm{B}-\mathrm{T} 3$ is dominated (T1 always better) Without T3 for a S1 is a dominated strategy NE S2T1

Battle of sexs: going to the Opera or to

 a soccer game?
M|F

$$
\begin{array}{l|l|l}
\hline \mathrm{S} & 5,4 & 1,1 \\
\hline \mathrm{O} & 0,0 & 4,5 \\
\hline
\end{array}
$$

We have 2 NE - we need another criterium to decide

Mix strategies

solution

a - supposes b plays L prob. β and R prob (1- β)

Ета $(\mathrm{A})=0 \times \beta+0(1-\beta)=0$
Ела $(B)=1 \times \beta+(-1)(1-\beta)=2 \beta-1$
When is a indifferent?
Ета(A)= Ета(B) $=>0=2 \beta-1=>\beta=1 / 2$
If $\beta>1 / 2$ a plays B if $\beta<1 / 2$ a plays A

The same for B
b - supposes a plays A prob. A and B prob. (1- α)
$\mathrm{E} \pi \mathrm{b}(\mathrm{L})=0 \times \alpha+0(1-\alpha)=0$
$E \pi b(R)=(-1) \times \alpha+3(1-\alpha)=3-4 \alpha$
When is a indifferent?
$\operatorname{Erb}(\mathrm{L})=\mathrm{Erb}(\mathrm{R})=>0=3-4 \alpha=>\alpha=3 / 4$
If $\alpha>3 / 4$ b plays L if $\alpha<3 / 4$ a plays R

NE in mix strategies
a $=>($ A prob $3 / 4$, B prob $1 / 4$)
$B=>(L \operatorname{prob} 1 / 2, R \operatorname{prob} 1 / 2)$

Dynamic game with complete and perfect information

 a first move b has 4 strategies| $a \backslash b$ | T1T1 | T1T2 | T2T1 | T2T2 | 3,5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S1 | 6,4 | 6,4 | 3,5 | 3,5 | s2 T1/ 5,3 |
| S2 | 5,3 | 2,2 | 5,3 | 2,2 | 2 2,2 |

(S1, T1T2) NE no sub game perfect
(S2, T2T1) NE SGP

If B first

$\begin{array}{lll}\mathrm{S} 2, \mathrm{~S} 2 & 5,3 & 2,2\end{array}$

Game with incomplete information (static)

A new CEO has been hired. He can be good or bad
There is CFO close to retirement and is tired, he prefers not to work hard

But if CEO detect him he doesn't get the annual bonus
CEO good meand higher profits and lower cost effort to control CFO $\mathrm{CEO}=\mathrm{A} \quad \mathrm{CFO}=\mathrm{B}$
I have 2 games

Good				
	W	NW		
C	$5 ; 2$	$4 ; 1$		

Bad		
	W	NW
C	4,2	2,1
NC	5,2	3,3

- How can I find an Equlibrium?
- I change the Game in one with complete but imperfect information

E payoff $B(W, p)=p(2)+(1-p) 2=2$
E payoff $B(N W, p) \quad=(1-p) 3+p(1)=3-2 p$
$2=3-2 p=>p=1 \backslash 2$ if $p<1 / 2$ low probability to be detected
=>[NW,(C,NC)] B doesn't work and A control if is Good
if $\mathrm{P}>1 / 2$ [W,(NC,NC)] B work and A doesn't control (Bayesian NE)

Repeated Prisoner's dilemma

$a \mid b$
 La 10;10 1;11
 Ha 11;1 3;3

T is a dominated strategy Play 2 times
First NE (M both games)
Other: first period play P and second M if you in the first P otherwise T) Pay off if no deviations $(10+3)(10+3)$ If deviation $(12+1) 10(1+1)$ non convinient
But not SGP, not credible

NE ($\mathrm{Ha} ; \mathrm{Hb}$)
Max profit (La,Lb)
How to increase profit?
Change game

$a \mid b$	Lb	Hb	R

$\begin{array}{llll}\text { La } & 10 ; 10 & 1 ; 11 & 0,0\end{array}$
Ha 11;1 $3 ; 31,0$
$\begin{array}{llll}R & 0,0 & 0,1 & 0,0\end{array}$

Other solutions?

- To play the game N times? NO. In the last period someone will deviate
- To play infinitely? Not T is credible
a $10,10,10,10,10, \ldots .1,0,0,0,0,0, \ldots$.
b $10,10,10,10,10, \ldots .11,1,1,1,1, \ldots .$.
We need to compare profit today and tomorrow.
Caveat: it is not renegotiation proof.

